21 resultados para Physiological responses


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coralline algae are globally distributed benthic primary producers that secrete calcium carbonate skeletons. In the context of ocean acidification, they have received much recent attention due to the potential vulnerability of their high-Mg calcite skeletons and their many important ecological roles. Herein, we summarize what is known about coralline algal ecology and physiology, providing context to understand their responses to global climate change. We review the impacts of these changes, including ocean acidification, rising temperatures, and pollution, on coralline algal growth and calcification. We also assess the ongoing use of coralline algae as marine climate proxies via calibration of skeletal morphology and geochemistry to environmental conditions. Finally, we indicate critical gaps in our understanding of coralline algal calcification and physiology and highlight key areas for future research. These include analytical areas that recently have become more accessible, such as resolving phylogenetic relationships at all taxonomic ranks, elucidating the genes regulating algal photosynthesis and calcification, and calibrating skeletal geochemical metrics, as well as research directions that are broadly applicable to global change ecology, such as the importance of community-scale and long-term experiments in stress response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine gastropod Littorina littorea from four sites in the vicinity of the Sullom Voe Oil Terminal was found to display reduced cytochemically determined latency of lysosomal arylsulphatase, β-glucuronidase and acid phosphatase in comparison with snails from a nearby ‘clean’ site. This is interpreted as indicating lysosomal destabilization by environmental factors. Elevated total activities of particular lysosomal hydrolases were recorded at three of the sites in Sullom Voe. Animals from a fourth site (Swarta Taing) showed significant depression of arylsulphatase and β-glucuronidase. Cytochemically determined activity of blood cell NADPH-neotetrazolium reductase, which is a component of microsomal detoxication systems, was stimulated in these same sites in comparison with the ‘clean’ reference site. This stimulation or induction is interpreted as a response to the presence of oil-derived polynuclear aromatic hydrocarbons. These results are discussed in the light of previous work on the effects of hydrocarbons on lysosomes and in terms of the possible physiological consequences for the animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problems of relating the results of experiments in the laboratory to events in nature are twofold: to equate the response to a single variable (hydrocarbons) with the natural variability in the biological material in a multivariate environment, and to consider whether the response established experimentally has any relevance to the animal's chances of survival and reproduction (i.e. its fitness) in the natural population. Recent studies of the effects of petroleum hydrocarbons on marine invertebrates are reviewed, with an emphasis on the physiological and cytochemical responses by bivalve molluscs. The dose-response relations that emerge suggest the intensity of the 'signal' that must be detected in nature if the chronic, sublethal effects of petroleum pollution are to be measured. The natural variability in these physiological and cytochemical processes are then reviewed and the main causes of variability in natural populations, both endogenous and exogenous, discussed. These results indicate the extent of the `noise' above which the signal from possible pollution effects must be detected. The results from recent field studies on the common mussel, Mytilus edulis, are discussed. The results are as complex as expected, but it proves possible to reduce the variance in the measured responses so that pollution effects, including those due to hydrocarbons, can be detected. The ecological consequences of the observed effects of petroleum hydrocarbons are then discussed in terms of reproductive effort and reproductive value. Considerable variation between populations exists here also and this can be used to help in the interpretation of the extent of the impact of the environment on the ecology of the population. The result is to place the findings of the laboratory experiments in an ecological context of natural variability and of the physiological costs of adaptation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Certain physiological differences between individuals in different populations of the mussel, Mytilus edulis, are described. In particular, the scope for growth differs in space and time and may be used to assess the animals' physiological condition. When the required measurements are made in the field, the rates of growth predicted from the physiological data agree well with observed rates of growth. An alternative approach utilizes mussels transplanted to various waters, with indices of condition then measured in the laboratory under standard conditions; an example of this approach is illustrated. Laboratory experiments are used to equate various levels of physiological condition with fecundity, in an attempt to equate physiological effects on the individual with likely population damage. A cytochemical index of stress is described, based on the latency of lysosomal enzymes; spatial variability in this index, and its relation with the scope for growth, are discussed. Finally, the results of some experiments on the effects of petroleum hydrocarbons on mussels are described and the presence of inducible activity of NADPH-dependent tetrazolium reductase in the blood cells is demonstrated. Certain considerations that apply in adopting similar measurements of biological effects of pollution in environmental monitoring programmes are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The calcifying coccolithophores have been proposed as a potentially vulnerable group in the face of increasing surface ocean CO2 levels. A full understanding of the likely responses of this group requires better mechanistic information on pH- and CO2-sensitive processes that underlie cell function at molecular, cellular and population levels. New findings on the mechanisms of pH homeostasis at a molecular and cellular level in both diatoms and coccolithophores are shaping our understanding of how these important groups may respond or acclimate to changing ocean pH. Critical parameters including intracellular pH homeostasis and cell surface pH will be considered. These studies are being carried out in parallel with genetic studies of natural oceanic populations to assess the natural genetic and physiological diversity that will underlie adaptation of populations in the long term.