19 resultados para Neodymium compounds
Resumo:
We present air-sea fluxes of oxygenated volatile organics compounds (OVOCs) quantified by eddy covariance (EC) during the Atlantic Meridional Transect cruise in 2012. Measurements of acetone, acetaldehyde, and methanol in air as well as in water were made in several different oceanic provinces and over a wide range of wind speeds (1-18 m s(-1)). The ocean appears to be a net sink for acetone in the higher latitudes of the North Atlantic but a source in the subtropics. In the South Atlantic, seawater acetone was near saturation relative to the atmosphere, resulting in essentially zero net flux. For acetaldehyde, the two-layer model predicts a small oceanic emission, which was not well resolved by the EC method. Chemical enhancement of air-sea acetaldehyde exchange due to aqueous hydration appears to be minor. The deposition velocity of methanol correlates linearly with the transfer velocity of sensible heat, confirming predominant airside control. We examine the relationships between the OVOC concentrations in air as well as in water, and quantify the gross emission and deposition fluxes of these gases.
Resumo:
We performed an annual study of oxygenated volatile organic compound (OVOC) seawater concentrations at a site off Plymouth, UK in the Western English Channel over the period of February 2011–March 2012. Acetone concentrations ranged from 2–10 nM (nanomole/L) in surface waters with a maximum observed in summer. Concentrations correlated positively with net shortwave radiation and UV light, suggestive of photochemically linked acetone production. We observed a clear decline in acetone concentrations below the mixed layer. Acetaldehyde varied between 4–37 nM in surface waters with higher values observed in autumn and winter. Surface concentrations of methanol ranged from 16–78 nM, but no clear annual cycle was observed. Methanol concentrations exhibited considerable inter-annual variability. We estimate consistent deposition to the sea surface for acetone and methanol but that the direction of the acetaldehyde flux varies during the year.