17 resultados para Micro-infiltration
Resumo:
The aim of this research was to make the first depth profiles of the microbial assimilation of methanol carbon and its oxidation to carbon dioxide and use as an energy source from the microlayer to 1000 m. Some of the highest reported methanol oxidation rate constants of 0.5–0.6 d−1 were occasionally found in the microlayer and immediately underlying waters (10 cm depth), albeit these samples also showed the greatest heterogeneity compared to other depths down to 1000 m. Methanol uptake into the particulate phase was exceptionally low in microlayer samples, suggesting that any methanol utilised by microbes in this environment is for energy generation. The sea surface microlayer and 10 cm depth also showed a higher proportion of bacteria with a low DNA content, and bacterial leucine uptake rates in surface microlayer samples were either less than or the same as those in the underlying 10 cm layer. The average methanol oxidation and particulate rates were however statistically the same throughout the depths sampled, although the latter were highly variable in the near-surface 0.25–2 m compared to deeper depths. The statistically significant relationship demonstrated between uptake of methanol into particles and bacterial leucine incorporation suggests that many heterotrophic bacteria could be using methanol carbon for cellular growth. On average, methanol bacterial growth efficiency (BGEm) in the top 25 m of the water column is 6% and decreases with depth. Although, for microlayer and 10 cm-depth samples, BGEm is less than the near-surface 25–217 cm, possibly reflecting increased environmental UV stress resulting in increased maintenance costs, i.e. energy required for survival. We conclude that microbial methanol uptake rates, i.e. loss from seawater, are highly variable, particularly close to the seawater surface, which could significantly impact upon seawater concentrations and hence the air–sea flux.
Resumo:
Primary productivity and subsequent carbon cycling in the coastal zone have a significant impact on the global carbon budget. It is currently unclear how anthropogenic activity could alter these budgets but long term coastal time series of hydrological, biogeochemical and biological measurements represent a key means to better understand past drivers, and hence to predicting future seasonal and inter-annual variability in carbon fixation in coastal ecosystems. An 8-year time series of primary production from 2003 to 2010, estimated using a recently developed absorption-based algorithm, was used to determine the nature and extent of change in primary production at a coastal station (L4) in the Western English Channel (WEC). Analysis of the seasonal and inter-annual variability in production demonstrated that on average, nano- and pico-phytoplankton account for 48% of the total carbon fixation and micro-phytoplankton for 52%. A recent decline in the primary production of nano- and pico-phytoplankton from 2005 to 2010 was observed, corresponding with a decrease in winter nutrient concentrations and a decrease in the biomass of Phaeocystis sp. Micro-phytoplankton primary production (PPM) remained relatively constant over the time series and was enhanced in summer during periods of high precipitation. Increases in sea surface temperature, and decreases in wind speeds and salinity were associated with later spring maxima in PPM. Together these trends indicate that predicted increases in temperature and decrease in wind speeds in future would drive later spring production whilst predicted increases in precipitation would also continue these blooms throughout the summer at this site.