24 resultados para Johnson, Fred G., 1892-
Resumo:
The efficiency of transfer of gases and particles across the air-sea interface is controlled by several physical, biological and chemical processes in the atmosphere and water which are described here (including waves, large- and small-scale turbulence, bubbles, sea spray, rain and surface films). For a deeper understanding of relevant transport mechanisms, several models have been developed, ranging from conceptual models to numerical models. Most frequently the transfer is described by various functional dependencies of the wind speed, but more detailed descriptions need additional information. The study of gas transfer mechanisms uses a variety of experimental methods ranging from laboratory studies to carbon budgets, mass balance methods, micrometeorological techniques and thermographic techniques. Different methods resolve the transfer at different scales of time and space; this is important to take into account when comparing different results. Air-sea transfer is relevant in a wide range of applications, for example, local and regional fluxes, global models, remote sensing and computations of global inventories. The sensitivity of global models to the description of transfer velocity is limited; it is however likely that the formulations are more important when the resolution increases and other processes in models are improved. For global flux estimates using inventories or remote sensing products the accuracy of the transfer formulation as well as the accuracy of the wind field is crucial.
Resumo:
Why a chapter on Perspectives and Integration in SOLAS Science in this book? SOLAS science by its nature deals with interactions that occur: across a wide spectrum of time and space scales, involve gases and particles, between the ocean and the atmosphere, across many disciplines including chemistry, biology, optics, physics, mathematics, computing, socio-economics and consequently interactions between many different scientists and across scientific generations. This chapter provides a guide through the remarkable diversity of cross-cutting approaches and tools in the gigantic puzzle of the SOLAS realm. Here we overview the existing prime components of atmospheric and oceanic observing systems, with the acquisition of ocean–atmosphere observables either from in situ or from satellites, the rich hierarchy of models to test our knowledge of Earth System functioning, and the tremendous efforts accomplished over the last decade within the COST Action 735 and SOLAS Integration project frameworks to understand, as best we can, the current physical and biogeochemical state of the atmosphere and ocean commons. A few SOLAS integrative studies illustrate the full meaning of interactions, paving the way for even tighter connections between thematic fields. Ultimately, SOLAS research will also develop with an enhanced consideration of societal demand while preserving fundamental research coherency.
Resumo:
The seeding of an expanse of surface waters in the equatorial Pacific Ocean with low concentrations of dissolved iron triggered a massive phytoplankton bloom which consumed large quantities of carbon dioxide and nitrate that these microscopic plants cannot fully utilize under natural conditions. These and other observations provide unequivocal support for the hypothesis that phytoplankton growth in this oceanic region is limited by iron bioavailability.
Resumo:
Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.
Resumo:
Elasmobranchs represent important components of marine ecosystems, but they can be vulnerable to overexploitation. This has driven investigations into the population genetic structure of large-bodied pelagic sharks, but relatively little is known of population structure in smaller demersal taxa, which are perhaps more representative of the biodiversity of the group. This study explores spatial population genetic structure of the small-spotted catshark (Scyliorhinus canicula), across European seas. The results show significant genetic differences among most of the Mediterranean sample collections, but no significant structure among Atlantic shelf areas. The data suggest the Mediterranean populations are likely to have persisted in a stable and structured environment during Pleistocene sea-level changes. Conversely, the Northeast Atlantic populations would have experienced major changes in habitat availability during glacial cycles, driving patterns of population reduction and expansion. The data also provide evidence of male-biased dispersal and female philopatry over large spatial scales, implying complex sex-determined differences in the behaviour of elasmobranchs. On the basis of this evidence, we suggest that patterns of connectivity are determined by trends of past habitat stability that provides opportunity for local adaptation in species exhibiting philopatric behaviour, implying that resilience of populations to fisheries and other stressors may differ across the range of species.