19 resultados para Immune Parameters
Resumo:
Phytoplankton size structure is an important indicator of the state of the pelagic ecosystem. Stimulated by the paucity of in situ observations on size structure, and by the sampling advantages of autonomous remote platforms, new efforts are being made to infer the size-structure of the phytoplankton from oceanographic variables that may be measured at high temporal and spatial resolution, such as total chlorophyll concentration. Large-scale analysis of in situ data has revealed coherent relationships between size-fractionated chlorophyll and total chlorophyll that can be quantified using the three-component model of Brewin et al. (2010). However, there are variations surrounding these general relationships. In this paper, we first revise the three-component model using a global dataset of surface phytoplankton pigment measurements. Then, using estimates of the average irradiance in the mixed-layer, we investigate the influence of ambient light on the parameters of the three-component model. We observe significant relationships between model parameters and the average irradiance in the mixed-layer, consistent with ecological knowledge. These relationships are incorporated explicitly into the three-component model to illustrate variations in the relationship between size-structure and total chlorophyll, ensuing from variations in light availability. The new model may be used as a tool to investigate modifications in size-structure in the context of a changing climate.
Resumo:
The use of in situ measurements is essential in the validation and evaluation of the algorithms that provide coastal water quality data products from ocean colour satellite remote sensing. Over the past decade, various types of ocean colour algorithms have been developed to deal with the optical complexity of coastal waters. Yet there is a lack of a comprehensive intercomparison due to the availability of quality checked in situ databases. The CoastColour Round Robin (CCRR) project, funded by the European Space Agency (ESA), was designed to bring together three reference data sets using these to test algorithms and to assess their accuracy for retrieving water quality parameters. This paper provides a detailed description of these reference data sets, which include the Medium Resolution Imaging Spectrometer (MERIS) level 2 match-ups, in situ reflectance measurements, and synthetic data generated by a radiative transfer model (HydroLight). These data sets, representing mainly coastal waters, are available from doi:10.1594/PANGAEA.841950. The data sets mainly consist of 6484 marine reflectance (either multispectral or hyperspectral) associated with various geometrical (sensor viewing and solar angles) and sky conditions and water constituents: total suspended matter (TSM) and chlorophyll a (CHL) concentrations, and the absorption of coloured dissolved organic matter (CDOM). Inherent optical properties are also provided in the simulated data sets (5000 simulations) and from 3054 match-up locations. The distributions of reflectance at selected MERIS bands and band ratios, CHL and TSM as a function of reflectance, from the three data sets are compared. Match-up and in situ sites where deviations occur are identified. The distributions of the three reflectance data sets are also compared to the simulated and in situ reflectances used previously by the International Ocean Colour Coordinating Group (IOCCG, 2006) for algorithm testing, showing a clear extension of the CCRR data which covers more turbid waters.
Resumo:
We examine a model of the rate of phytoplankton production in the ocean and its dependence on depth. The model is analysed as a function of photosynthesis parameters and it is shown that: (i) production profiles with depth are determined uniquely by the parameter values; (ii) daily water column production is not uniquely determined by the parameter values; (iii) a unique combination of parameters exists for which the model best fits a measured production profile. An inverse procedure is developed to recover photosynthesis parameters from measured profiles of primary production, and its performance tested by application to profiles of primary production collected at the Hawaii Ocean Time Series. For each profile tested, the method is successful in recovery of the photosynthesis parameters. The method can be applied to the estimation of photosynthesis parameters from data on in situ production profiles, which have been collected globally for more than half a century, thereby augmenting the world archive of these parameters for application in ecosystem modelling and estimation of primary production from remotely sensed data.