20 resultados para ISI


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deriving maps of phytoplankton taxa based on remote sensing data using bio-optical properties of phytoplankton alone is challenging. A more holistic approach was developed using artificial neural networks, incorporating ecological and geographical knowledge together with ocean color, bio-optical characteristics, and remotely sensed physical parameters. Results show that the combined remote sensing approach could discriminate four major phytoplankton functional types (diatoms, dinoflagellates, coccolithophores, and silicoflagellates) with an accuracy of more than 70%. Models indicate that the most important information for phytoplankton functional type discrimination is spatio-temporal information and sea surface temperature. This approach can supply data for large-scale maps of predicted phytoplankton functional types, and an example is shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An overview is provided of the observed and potential future responses of zooplankton communities to global warming. I begin by describing the importance of zooplankton in ocean ecosystems and the attributes that make them sensitive beacons of climate change. Global warming may have even greater repercussions for marine ecosystems than for terrestrial ecosystems, because temperature influences water column stability, nutrient enrichment, and the degree of new production, and thus the abundance, size composition, diversity, and trophic efficiency of zooplankton. Pertinent descriptions of physical changes in the ocean in response to climate change are given as a prelude to a detailed discussion of observed impacts of global warming on zooplankton. These manifest as changes in the distribution of individual species and assemblages, in the timing of important life-cycle events, and in abundance and community structure. The most illustrative case studies, where climate has had an obvious, tangible impact on zooplankton and substantial ecosystem consequences, are presented. Changes in the distribution and phenology of zooplankton are faster and greater than those observed for terrestrial groups. Relevant projected changes in ocean conditions are then presented, followed by an exploration of potential future changes in zooplankton communities from the perspective of different modelling approaches. Researchers have used a range of modelling approaches on individual species and functional groups forced by output from climate models under future greenhouse gas emission scenarios. I conclude by suggesting some potential future directions in climate change research for zooplankton, viz. the use of richer zooplankton functional groups in ecosystem models; greater research effort in tropical systems; investigating climate change in conjunction with other human impacts; and a global zooplankton observing system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification may negatively affect calcifying plankton, opening ecological space for non-calcifying species. Recently, a study of climate-forcing of jellyfish reported the first analysis suggesting that there were more jellyfish (generally considered a noncalcifying group) when conditions were more acidic (lower pH) from one area within the North Sea. We examine this suggestion for a number of areas in the North Sea and beyond in the Northeast Atlantic using coelenterate records from the Continuous Plankton Recorder and pH data from the International Council for the Exploration of the Sea for the period 1946-2003. We could find no significant relationships between jellyfish abundance and acidic conditions in any of the regions investigated. We conclude that the role of pH in structuring zooplankton communities in the North Sea and further afield at present is tenuous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latitudinal gradients in diversity are among the most striking features in ecology. For terrestrial species, climate (i.e. temperature and precipitation) is believed to exert a strong influence on the geographical distributions of diversity through its effects on energy availability. Here, we provide the first global description of geographical variation in the diversity of marine copepods, a key trophic link between phytoplankton and fish, in relation to environmental variables. We found a polar-tropical difference in copepod diversity in the Northern Hemisphere where diversity peaked at subtropical latitudes. In the Southern Hemisphere, diversity showed a tropical plateau into the temperate regions. This asymmetry around the Equator may be explained by climatic conditions, in particular the influence of the Inter-Tropical Convergence Zone, prevailing mainly in the northern tropical region. Ocean temperature was the most important explanatory factor among all environmental variables tested, accounting for 54 per cent of the variation in diversity. Given the strong positive correlation between diversity and temperature, local copepod diversity, especially in extra-tropical regions, is likely to increase with climate change as their large-scale distributions respond to climate warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The comment by Votier et al. (2008) on our recently published article (Wynn et al. 2007) contains two main criticisms: (i) that our analytical approach is inappropriate and (ii) that we have failed to acknowledge other factors that may have contributed to the change in Balearic Shearwater numbers recorded throughout northwest European waters. We strongly disagree with both these criticisms.