22 resultados para Greenhouse gas reporting
Resumo:
A sub-seabed release of carbon dioxide (CO2) was conducted to assess the potential impacts of leakage from sub-seabed geological CO2 Capture and Storage CCS) on benthic macrofauna. CO2 gas was released 12 m below the seabed for 37 days, causing significant disruption to sediment carbonate chemistry. Regular macrofauna samples were collected from within the area of active CO2 leakage (Zone 1) and in three additional reference areas, 25 m, 75 m and 450 m from the centre of the leakage (Zones 2, 3 and 4 respectively). Macrofaunal community structure changed significantly in all zones during the study period. However, only the changes in Zone 1 were driven by the CO2 leakage with the changes in reference zones appearing to reflect natural seasonal succession and stochastic weather events. The impacts in Zone 1 occurred rapidly (within a few days), increased in severity through the duration of the leak, and continued to worsen after the leak had stopped. Considerable macrofaunal recovery was seen 18 days after the CO2 gas injection had stopped. In summary, small short-term CCS leakage events are likely to cause highly localised impacts on macrofaunal communities and there is the potential for rapid recovery to occur, depending on the characteristics of the communities and habitats impacted.
Resumo:
In 2012, a controlled sub-seabed release of carbon dioxide (CO2) was conducted in Ardmucknish Bay, a shallow (12 m) coastal bay on the west coast of Scotland. During the experiment, CO2 gas was released 12 m below the seabed for 37 days, causing significant disruption to sediment and water carbonate chemistry as the gas passed up through the sediment and into the overlying water. One of the aims of the study was to investigate how the impacts caused by leakage from geological CO2 Capture and Storage (CCS) could be detected and quantified in the context of natural heterogeneity and dynamics. To do this underwater photography was used to analyze (i) the benthic megafaunal response to the CO2 release and (ii) the dynamics of the CO2 bubble streams, emerging from the seabed into the overlying water column. The frequently observed megafauna species in the study area were Virgularia mirabilis (Cnidaria), Turritella communis (Mollusca), Asterias rubens (Echinodermata), Pagurus bernhardus (Crustacea), Liocarcinus depurator (Crustacea), and Gadus morhua (Osteichthyes). No discernable abnormal behavior was observed for these megafauna, in any of the zones investigated, during or after the CO2 release. Time-lapse photography revealed that the intensity and presence of the CO2 bubble plume was affected by the tides, with the most active bubbling seen at low tides and the larger hydrostatic pressure at high tide suppressing CO2 bubbling from the seabed.
Resumo:
This paper reviews research into the potential environmental impacts of leakage from geological storage of CO2 since the publication of the IPCC Special Report on Carbon Dioxide Capture and Storage in 2005. Possible impacts are considered on onshore (including drinking water aquifers) and offshore ecosystems. The review does not consider direct impacts on man or other land animals from elevated atmospheric CO2 levels. Improvements in our understanding of the potential impacts have come directly from CO2 storage research but have also benefitted from studies of ocean acidification and other impacts on aquifers and onshore near surface ecosystems. Research has included observations at natural CO2 sites, laboratory and field experiments and modelling. Studies to date suggest that the impacts from many lower level fault- or well-related leakage scenarios are likely to be limited spatially and temporarily and recovery may be rapid. The effects are often ameliorated by mixing and dispersion of the leakage and by buffering and other reactions; potentially harmful elements have rarely breached drinking water guidelines. Larger releases, with potentially higher impact, would be possible from open wells or major pipeline leaks but these are of lower probability and should be easier and quicker to detect and remediate.
Resumo:
Global warming and its link to the burning of fossil fuels has prompted many governments around the world to set legally binding greenhouse gas reduction targets which are to be partially realised through a stronger reliance on renewable (e.g. wind) and other lower carbon (i.e. natural gas and nuclear) energy commodities. The marine environment will play a key role in hosting or supporting these new energy strategies. However, it is unclear how the construction, operation and eventual decommissioning of these energy systems, and their related infrastructure, will impact the marine environment, the ecosystem services (i.e. cultural, regulating, provisioning and supporting) and in turn the benefits it provides for human well-being. This uncertainty stems from a lack of research that has synthesised into a common currency the various effects of each energy sector on marine ecosystems and the benefits humans derive from it. To address this gap, the present study reviews existing ecosystem impact studies for offshore components of nuclear, offshore wind, offshore gas and offshore oil sectors and translates them into the common language of ecosystem service impacts that can be used to evaluate current policies. The results suggest that differences exist in the way in which energy systems impact ecosystem services, with the nuclear sector having a predominantly negative impact on cultural ecosystem services; oil and gas a predominately negative impact on cultural, provisioning, regulating and supporting ecosystem services; while wind has a mix of impacts on cultural, provisioning and supporting services and an absence of studies for regulating services. This study suggests that information is still missing with regard to the full impact of these energy sectors on specific types of benefits that humans derive from the marine environment and proposes possible areas of targeted research.
Resumo:
Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an inter-disciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterise a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual level responses, while acidification has a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multi-scale responses to multiple stressors, in an ecosystem context.
Resumo:
Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g−1 d−1, or 30 ng g−1 POC h−1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.
Resumo:
Methane (CH4), an important greenhouse gas that affects radiation balance and consequently the earth's climate, still has uncertainties in its sinks and sources. The world's oceans are considered to be a source of CH4 to the atmosphere, although the biogeochemical processes involved in its formation are not fully understood. Several recent studies provided strong evidence of CH4 production in oxic marine and freshwaters, but its source is still a topic of debate. Studies of CH4 dynamics in surface waters of oceans and large lakes have concluded that pelagic CH4 supersaturation cannot be sustained either by lateral inputs from littoral or benthic inputs alone. However, regional and temporal oversaturation of surface waters occurs frequently. This comprises the observation of a CH4 oversaturating state within the surface mixed layer, sometimes also termed the "oceanic methane paradox". In this study we considered marine algae as a possible direct source of CH4. Therefore, the coccolithophore Emiliania huxleyi was grown under controlled laboratory conditions and supplemented with two 13C-labeled carbon substrates, namely bicarbonate and a position-specific 13C-labeled methionine (R-S-13CH3). The CH4 production was 0.7 µg particular organic carbon (POC) g−1 d−1, or 30 ng g−1 POC h−1. After supplementation of the cultures with the 13C-labeled substrate, the isotope label was observed in headspace CH4. Moreover, the absence of methanogenic archaea within the algal culture and the oxic conditions during CH4 formation suggest that the widespread marine algae Emiliania huxleyi might contribute to the observed spatially and temporally restricted CH4 oversaturation in ocean surface waters.