27 resultados para Global Carbon Integrity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Very large pulses of particulate organic matter intermittently sink to the deep waters of the open ocean in the Northeast Atlantic. These pulses, measured by moored sediment traps since 1989, can contribute up to 60% of the organic flux to 3000 m in a particular year and are thus a major cause of the variability in carbon sequestration from the atmosphere in the region. Pulses occur in the late summer and are characterized by material that is very rich in organic carbon but with low concentrations of the biominerals opal and calcite. A number of independent lines of evidence have been examined to determine the causes of these pulses: (1) Data from the Continuous Plankton Recorder (CPR) survey show that in this region, radiolarian protozoans intermittently reach high abundances in the late summer just preceding organic pulses to depth. (2) CPR data also show that the interannual variability in radiolarian abundance since 1997 mirrors very closely the variability of deep ocean organic deposition. (3) The settling material collected in the traps displays a strong correlation between fecal pellets produced by radiolaria and the measured organic carbon flux. These all suggest that the pulses are mediated by radiolarians, a group of protozoans found throughout the world’s oceans and which are widely used by paleontologists to determine past climate conditions. Changes in the upper ocean community structure (between years and on longer timescales) may have profound effects on the ability of the oceans to sequester carbon dioxide from the atmosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although recent studies suggest that climate change may substantially accelerate the rate of species loss in the biosphere, only a few studies have focused on the potential consequences of a spatial reorganization of biodiversity with global warming. Here, we show a pronounced latitudinal increase in phytoplanktonic and zooplanktonic biodiversity in the extratropical North Atlantic Ocean in recent decades. We also show that this rise in biodiversity paralleled a decrease in the mean size of zooplanktonic copepods and that the reorganization of the planktonic ecosystem toward dominance by smaller organisms may influence the networks in which carbon flows, with negative effects on the downward biological carbon pump and demersal Atlantic cod (Gadus morhua). Our study suggests that, contrary to the usual interpretation of increasing biodiversity being a positive emergent property promoting the stability/resilience of ecosystems, the parallel decrease in sizes of planktonic organisms could be viewed in the North Atlantic as reducing some of the services provided by marine ecosystems to humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite its fundamental role in controlling the Earth's climate, present estimates of global organic carbon export to the deep sea are affected by relatively large uncertainties. These uncertainties are due to lack of observations as well as disagreement among methods and assumptions used to estimate carbon export. Complementary observations are thus needed to reduce these uncertainties. Here we show that optical backscattering measured by Bio-Argo floats can detect a seasonal carbon export flux in the Norwegian Sea. This export was most likely due to small particles (i.e., 0.2–20 μm), was comparable to published export values, and contributed to long-term carbon sequestration. Our findings highlight the importance of small particles and of physical mixing in the biological carbon pump and support the use of autonomous platforms as tools to improve our mechanistic understanding of the ocean carbon cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An estimate of the annual global methyl bromide (CH3Br) emissions from automobile exhausts has been determined by extrapolating the results of a field study conducted in the United Kingdom (UK). A strong linear correlation was observed between the CH3Br and carbon monoxide (CO) concentrations of roadside air in three cities. This correlation and knowledge of the UK CO emissions was used to estimate the source strength of CH3Br from automobile exhausts in the UK (0.04 ktonnes yr−1). Further extrapolations lead to a value of 1.5 ktonnes yr−1 (with an upper limit of 3.0 ktonnes yr−1) of CH3Br released globally to the atmosphere from automobile exhausts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of phytoplankton carbon (Cphyto) in the field has been a long-sought but elusive goal in oceanography. Proxy measurements of Cphyto have been employed in the past, but are subject to many confounding influences that undermine their accuracy. Here we report the first directly measured Cphyto values from the open ocean. The Cphyto samples were collected from a diversity of environments, ranging from Pacific and Atlantic oligotrophic gyres to equatorial upwelling systems to temperate spring conditions. When compared to earlier proxies, direct measurements of Cphyto exhibit the strongest relationship with particulate backscattering coefficients (bbp) (R2=0.69). Chlorophyll concentration and total particulate organic carbon (POC) concentration accounted for ~20% less variability in Cphyto than bbp. Ratios of Cphyto to Chl a span an order of magnitude moving across and within distinct ecosystems. Similarly, Cphyto:POC ratios were variable with the lowest values coming from productive temperate waters and the highest from oligotrophic gyres. A strong relationship between Cphyto and bbp is particularly significant because bbp is a property retrievable from satellite ocean color measurements. Our results, therefore, are highly encouraging for the global monitoring of phytoplankton biomass from space. The continued application of our Cphyto measurement approach will enable validation of satellite retrievals and contribute to an improved understanding of environmental controls on phytoplankton biomass and physiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem models are often assessed using quantitative metrics of absolute ecosystem state, but these model-data comparisons are disproportionately vulnerable to discrepancies in the location of important circulation features. An alternative method is to demonstrate the models capacity to represent ecosystem function; the emergence of a coherent natural relationship in a simulation indicates that the model may have an appropriate representation of the ecosystem functions that lead to the emergent relationship. Furthermore, as emergent properties are large-scale properties of the system, model validation with emergent properties is possible even when there is very little or no appropriate data for the region under study, or when the hydrodynamic component of the model differs significantly from that observed in nature at the same location and time. A selection of published meta-analyses are used to establish the validity of a complex marine ecosystem model and to demonstrate the power of validation with emergent properties. These relationships include the phytoplankton community structure, the ratio of carbon to chlorophyll in phytoplankton and particulate organic matter, the ratio of particulate organic carbon to particulate organic nitrogen and the stoichiometric balance of the ecosystem. These metrics can also inform aspects of the marine ecosystem model not available from traditional quantitative and qualitative methods. For instance, these emergent properties can be used to validate the design decisions of the model, such as the range of phytoplankton functional types and their behaviour, the stoichiometric flexibility with regards to each nutrient, and the choice of fixed or variable carbon to nitrogen ratios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global ocean biogeochemistry models currently employed in climate change projections use highly simplified representations of pelagic food webs. These food webs do not necessarily include critical pathways by which ecosystems interact with ocean biogeochemistry and climate. Here we present a global biogeochemical model which incorporates ecosystem dynamics based on the representation of ten plankton functional types (PFTs); six types of phytoplankton, three types of zooplankton, and heterotrophic bacteria. We improved the representation of zooplankton dynamics in our model through (a) the explicit inclusion of large, slow-growing zooplankton, and (b) the introduction of trophic cascades among the three zooplankton types. We use the model to quantitatively assess the relative roles of iron vs. grazing in determining phytoplankton biomass in the Southern Ocean High Nutrient Low Chlorophyll (HNLC) region during summer. When model simulations do not represent crustacean macrozooplankton grazing, they systematically overestimate Southern Ocean chlorophyll biomass during the summer, even when there was no iron deposition from dust. When model simulations included the developments of the zooplankton component, the simulation of phytoplankton biomass improved and the high chlorophyll summer bias in the Southern Ocean HNLC region largely disappeared. Our model results suggest that the observed low phytoplankton biomass in the Southern Ocean during summer is primarily explained by the dynamics of the Southern Ocean zooplankton community rather than iron limitation. This result has implications for the representation of global biogeochemical cycles in models as zooplankton faecal pellets sink rapidly and partly control the carbon export to the intermediate and deep ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate1, yet many economies will remain reliant on these technologies for several decades2. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system3. In many regions storage reservoirs are located offshore4, 5, over a kilometre or more below societally important shelf seas6. Therefore, concerns about the possibility of leakage7, 8 and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d−1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.