125 resultados para European Atlantic
Resumo:
The European Slope Current (SC) is a major section of the warm poleward flow from the Atlantic to the Arctic, which also moderates the exchange of heat, salt, nutrients and carbon between the deep ocean and the European shelf seas. The mean structure of the geostrophic flow, seasonality, interannual variability and long-term trend of SC are appraised with an unprecedented continuous 20-year satellite altimeter dataset. Comparisons with long term in situ data showed a maximum correlation of r2=0.51 between altimeter and Acoustic Doppler Current Profilers (ADCP), with similar results for drogued buoy data. Mean geostrophic currents were appraised more comprehensively than previous attempts, and the paths of 4 branches of the North Atlantic Current (NAC) and positions of 5 eddies in the region were derived quantitatively. A consistent seasonal cycle in the flow of the SC was found at all 8 sections along the European shelf slope, with maximum poleward flow in the winter and minimum in the summer. The seasonal difference in the altimetry current speed amounted to ~8-10 cm s-1 at the northern sections, but only ~5 cm s-1 on the Bay of Biscay slopes. This extended altimeter dataset indicates significant regional and seasonal variations, and has revealed new insights into the interannual variability of the SC. It is shown that there is a peak poleward flow at most positions along a ~2000 km stretch of the continental slope from Portugal to Scotland during 1995-1997, but this did not clearly relate to the extreme negative North Atlantic Oscillation (NAO) in the winter of 1995-1996. The speed of the SC exhibited a long term decreasing trend of ~1% per year. By contrast the NAC showed no significant trend over the 20-year period. Major changes in the NAC occurred three times, and these changes followed decreases in the NAO index.
Resumo:
Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas’ ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton’s exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change arising from complex combinations of multiple physical drivers, including changes in mixing, circulation and temperature, which act both locally and non-locally through advection.
Resumo:
Here we present quantitative projections of potential futures for ecosystems in the North Atlantic basin generated from coupling a climate change-driven biophysical model (representing ecosystem and fish populations under climate change) and a scenario-driven ecological–economic model (representing fleets and industries under economic globalization). Four contrasting scenarios (Baseline, Fortress, Global Commons, Free Trade) were defined from the perspective of alternative regional management and governance of the oceanic basin, providing pathways for the future of ecosystems in the Northeast Atlantic basin by 2040. Results indicate that in the time frame considered: (1) the effects of governance and trade decisions are more significant in determining outcomes than the effects of climate change alone, (2) climate change is likely to result in a poleward latitudinal shift of species ranges and thus resources, with implications for exploitation patterns, (3) the level of fisheries regulation is the most important factor in determining the long term evolution of the fisheries system, (4) coupling climate change and governance impacts demonstrates the complex interaction between different components of this social–ecological system, (5) an important driver of change for the future of the North Atlantic and the European fishing fleets appears to be the interplay between wild fisheries and aquaculture development, and finally (6) scenarios demonstrate that the viability and profit of fisheries industries is highly volatile. This study highlights the need to explore basin-scale policy that combines medium to long-term environmental and socio-economic considerations, and the importance of defining alternative sustainable pathways.
Resumo:
In this paper we present the first decadal reanalysis simulation of the biogeochemistry of the North West European shelf, along with a full evaluation of its skill and value. An error-characterized satellite product for chlorophyll was assimilated into a physical-biogeochemical model of the North East Atlantic, applying a localized Ensemble Kalman filter. The results showed that the reanalysis improved the model predictions of assimilated chlorophyll in 60% of the study region. Model validation metrics showed that the reanalysis had skill in matching a large dataset of in situ observations for ten ecosystem variables. Spearman rank correlations were significant and higher than 0.7 for physical-chemical variables (temperature, salinity, oxygen), ∼0.6 for chlorophyll and nutrients (phosphate, nitrate, silicate), and significant, though lower in value, for partial pressure of dissolved carbon dioxide (∼0.4). The reanalysis captured the magnitude of pH and ammonia observations, but not their variability. The value of the reanalysis for assessing environmental status and variability has been exemplified in two case studies. The first shows that between 340,000-380,000 km2 of shelf bottom waters were oxygen deficient potentially threatening bottom fishes and benthos. The second application confirmed that the shelf is a net sink of atmospheric carbon dioxide, but the total amount of uptake varies between 36-46 Tg C yr−1 at a 90% confidence level. These results indicate that the reanalysis output dataset can inform the management of the North West European shelf ecosystem, in relation to eutrophication, fishery, and variability of the carbon cycle.
Resumo:
The relationship between biodiversity and stability of marine benthic assemblages was investigated using existing data sets (n = 28) covering various spatial (m-km) and temporal (1973-2006) scales in different benthic habitats (emergent rock, rock pools and sedimentary habitats) through meta-analyses. Assemblage stability was estimated by measuring temporal variances of species richness, total abundance (density or % cover) and community species composition and abundance structure (using multivariate analyses). Positive relationships between temporal variability in species number and richness were generally observed at both quadrat (<1 m2) and site (100 m2) scales, while no relationships were observed by multivariate analyses. Positive relationships were also observed at the scale of site between temporal variability in species number and variability in community structure with evenness estimates. This implies that the relationship between species richness or evenness and species richness variability is slightly positive and depends on the scale of observation, suggesting that biodiversity per se is important for the stability of ecosystems. Changes within community assemblages in terms of structure are, however, generally independent of biodiversity, suggesting no effect of diversity, but the potential impact of individual species, and/or environmental factors. Except for sedimentary and rock pool habitats, no relationship was observed between temporal variation of the aggregated variable of total abundances and diversity at either scale. Overall our results emphasise that relationships depend on scale of measurements, type of habitats and the marine systems (North Atlantic and Mediterranean) considered.
Resumo:
Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.
Resumo:
Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.
Resumo:
The UK and EU have recently committed to an ecosystem-based approach to the management of our marine environment. In line with the requirements of the Habitats regulations, all consents likely to significantly affect Special Areas of Conservation (SACs) and Special Protection Areas (SPAs) are to be reviewed. As part of this process, 'site characterisation' is seen as an important first step towards the improved management of designated sites. This characterisation series, undertaken by the Marine Biological Association of the United Kingdom and funded by the Environment Agency and English Nature, sets out to determine the current status of designated marine sites in South West England, and how vulnerable (or robust) they are to contaminants (metals, organics, nutrients) and other anthropogenic pressures. Using published information and unpublished data-sets from regulatory agencies, conservation bodies and research institutes (particularly those of the PMPS*), evidence is compiled on the links between potentially harmful 'activities', environmental quality, and resultant biological consequences. This includes an evaluation of long-term change. The focus is the effect of water and sediment quality on the key interest features of European Marine sites in the South West of England, namely: - Fal and Helford cSAC (MBA Occasional Publication 8) - Plymouth Sound and Estuaries cSAC/ SPA (MBA Occasional Publication 9) - Exe Estuary SPA (MBA Occasional Publication 10) - Chesil and the Fleet cSAC/ SPA (MBA Occasional Publication 11) - Poole Harbour SPA (MBA Occasional Publication 12) - Severn Estuary pSAC/SPA (MBA Occasional Publication 13) Detailed analysis for each of these sites is provided individually. The summary report contains an overview of physical properties, uses and vulnerability for each of these sites, together with brief comparisons of pollution sources, chemical exposure (via sediment and water) and evidence of biological impact (from bioaccumulation to community-level response). Limitations of the data, and gaps in our understanding of these systems are highlighted and suggestions are put forward as to where future research and surveillance is most needed. Hopefully this may assist the statutory authorities in targeting future monitoring and remedial activities. * PMSP: Plymouth Marine Sciences Partnership, comprising the Marine Biological Association (MBA), University of Plymouth (UoP), the Sir Alister Hardy Foundation for Ocean Science, and Plymouth Marine Laboratories (PML)