26 resultados para Environment impact


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Available methods for measuring the impact of ocean acidification (OA) and leakage from carbon capture and storage (CCS) on marine sedimentary pH profiles are unsuitable for replicated experimental setups. To overcome this issue, a novel optical sensor application is presented, using off-the-shelf optode technology (MOPP). The application is validated using microprofiling, during a CCS leakage experiment, where the impact and recovery from a high CO2 plume was investigated in two types of natural marine sediment. MOPP offered user-friendliness, speed of data acquisition, robustness to sediment type, and large sediment depth range. This ensemble of characteristics overcomes many of the challenges found with other pH measuring methods, in OA and CCS research. The impact varied greatly between sediment types, depending on baseline pH variability and sediment permeability. Sedimentary pH profile recovery was quick, with profiles close to control conditions 24 h after the cessation of the leak. However, variability of pH within the finer sediment was still apparent 4 days into the recovery phase. Habitat characteristics need therefore to be considered, to truly disentangle high CO2 perturbation impacts on benthic systems. Impacts on natural communities depend not only on the pH gradient caused by perturbation, but also on other processes that outlive the perturbation, adding complexity to recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sub-seabed release of carbon dioxide (CO2) was conducted to assess the potential impacts of leakage from sub-seabed geological CO2 Capture and Storage CCS) on benthic macrofauna. CO2 gas was released 12 m below the seabed for 37 days, causing significant disruption to sediment carbonate chemistry. Regular macrofauna samples were collected from within the area of active CO2 leakage (Zone 1) and in three additional reference areas, 25 m, 75 m and 450 m from the centre of the leakage (Zones 2, 3 and 4 respectively). Macrofaunal community structure changed significantly in all zones during the study period. However, only the changes in Zone 1 were driven by the CO2 leakage with the changes in reference zones appearing to reflect natural seasonal succession and stochastic weather events. The impacts in Zone 1 occurred rapidly (within a few days), increased in severity through the duration of the leak, and continued to worsen after the leak had stopped. Considerable macrofaunal recovery was seen 18 days after the CO2 gas injection had stopped. In summary, small short-term CCS leakage events are likely to cause highly localised impacts on macrofaunal communities and there is the potential for rapid recovery to occur, depending on the characteristics of the communities and habitats impacted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dispersion of a patch of the tracer sulfur hexafluoride (SF6) is used to assess the lateral diffusivity in the coastal waters of the western part of the Gulf of Lion (GoL), northwestern Mediterranean Sea, during the Latex10 experiment (September 2010). Immediately after the release, the spreading of the patch is associated with a strong decrease of the SF6 concentrations due to the gas exchange from the ocean to the atmosphere. This has been accurately quantified, evidencing the impact of the strong wind conditions during the first days of this campaign. Few days after the release, as the atmospheric loss of SF6 decreased, lateral diffusivity coefficient at spatial scales of 10 km has been computed using two approaches. First, the evolution of the patch with time was combined with a diffusion-strain model to obtain estimates of the strain rate (γ = 2.5 10- 6 s- 1) and of the lateral diffusivity coefficient (Kh = 23.2 m2s− 1). Second, a steady state model was applied, showing Kh values similar to the previous method after a period of adjustment between 2 and 4.5 days. This implies that after such period, our computation of Kh becomes insensitive to the inclusion of further straining of the patch. Analysis of sea surface temperature satellite imagery shows the presence of a strong front in the study area. The front clearly affected the dynamics within the region and thus the temporal evolution of the patch. Our results are consistent with previous studies in open ocean and demonstrate the success and feasibility of those methods also under small-scale, rapidly-evolving dynamics typical of coastal environments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution and function of many marine species is largely determined by the effect of abiotic drivers on their reproduction and early development, including those drivers associated with elevated CO2 and global climate change. A number of studies have therefore investigated the effects of elevated pCO2 on a range of reproductive parameters, including sperm motility and fertilisation success. To date, most of these studies have not examined the possible synergistic effects of other abiotic drivers, such as the increased frequency of hypoxic events that are also associated with climate change. The present study is therefore novel in assessing the impact that an hypoxic event could have on reproduction in a future high CO2 ocean. Specifically, this study assesses sperm motility and fertilisation success in the sea urchin Paracentrotus lividus exposed to elevated pCO2 for 6 months. Gametes extracted from these pre-acclimated individuals were subjected to hypoxic conditions simulating an hypoxic event in a future high CO2 ocean. Sperm swimming speed increased under elevated pCO2 and decreased under hypoxic conditions resulting in the elevated pCO2 and hypoxic treatment being approximately equivalent to the control. There was also a combined negative effect of increased pCO2 and hypoxia on the percentage of motile sperm. There was a significant negative effect of elevated pCO2 on fertilisation success, and when combined with a simulated hypoxic event there was an even greater effect. This could affect cohort recruitment and in turn reduce the density of this ecologically and economically important ecosystem engineer therefore potentially effecting biodiversity and ecosystem services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marine environment provides a number of services which contribute to human well-being including the provision of food, regulation of climate and the provision of settings for cultural gains. To ensure these services continue to be provided, effective management is required and is being strategically implemented through the development of marine spatial plans. These plans require an understanding of the costs and benefits associated with alternative marine uses and how they contribute to human well-being. One benefit which is often difficult to quantify is the health benefit of engaging with the marine environment. To address this, the research develops an approach which can estimate the contribution aquatic physical activities makes to quality adjusted life years (QALYs) in monetary and non-monetary terms. Using data from the Health Survey for England, the research estimates that physical activities undertaken in aquatic environments at a national level provides a total gain of 24,853 QALYs. A conservative estimate of the monetary value of a QALY gain of this magnitude is £176 million. This approach provides estimates of health benefits which can be used in more comprehensive impact assessments, such as cost-benefit analysis, to compare alternative marine spatial plans. The paper concludes by discussing future steps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microscopic plastic debris, termed “microplastics”, are of increasing environmental concern. Recent studies have demonstrated that a range of zooplankton, including copepods, can ingest microplastics. Copepods are a globally abundant class of zooplankton that form a key trophic link between primary producers and higher trophic marine organisms. Here we demonstrate that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus. Exposed to 20 μm polystyrene beads (75 microplastics mL–1) and cultured algae ([250 μg C L–1) for 24 h, C. helgolandicus ingested 11% fewer algal cells (P = 0.33) and 40% less carbon biomass (P < 0.01). There was a net downward shift in the mean size of algal prey consumed (P < 0.001), with a 3.6 fold increase in ingestion rate for the smallest size class of algal prey (11.6–12.6 μm), suggestive of postcapture or postingestion rejection. Prolonged exposure to polystyrene microplastics significantly decreased reproductive output, but there were no significant differences in egg production rates, respiration or survival. We constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time. We conclude that microplastics impede feeding in copepods, which over time could lead to sustained reductions in ingested carbon biomass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid increase in the number of tidal stream turbine arrays will create novel and unprecedented levels of anthropogenic activity within habitats characterized by horizontal current speeds exceeding 2 ms−1. However, the potential impacts on pursuit‐diving seabirds exploiting these tidal stream environments remain largely unknown. Identifying similarities between the fine‐scale physical features (100s of metres) suitable for array installations, and those associated with foraging pursuit‐diving seabirds, could identify which species are most vulnerable to either collisions with moving components, or displacement from these installations. A combination of vessel‐based observational surveys, Finite Volume Community Ocean Model outputs and hydroacoustic seabed surveys provided concurrent measures of foraging distributions and physical characteristics at a fine temporal (15 min) and spatial (500 m) resolution across a tidal stream environment suitable for array installations, during both breeding and non‐breeding seasons. These data sets were then used to test for associations between foraging pursuit‐diving seabirds (Atlantic puffins Fratercula arctica, black guillemots Cepphus grylle, common guillemots Uria aalge, European shags Phalacrocorax aristotelis) and physical features. These species were associated with areas of fast horizontal currents, slow horizontal currents, high turbulence, downward vertical currents and also hard–rough seabeds. The identity and strength of associations differed among species, and also within species between seasons, indicative of interspecific and intraspecific variations in habitat use. However, Atlantic puffins were associated particularly strongly with areas of fast horizontal currents during breeding seasons, and European shags with areas of rough–hard seabeds and downward vertical currents during non‐breeding seasons. Synthesis and applications. Atlantic puffins’ strong association with fast horizontal current speeds indicates that they are particularly likely to interact with installations during breeding seasons. Any post‐installation monitoring and mitigation measures should therefore focus on this species and season. The multi‐species associations with high turbulence and downward vertical currents, which often coincide with fast horizontal current speeds, also highlight useful pre‐installation mitigation measures via the omission of devices from these areas, reducing the overall likelihood of interactions. Environmental impact assessments (EIA) generally involve once‐a‐month surveys across 2‐year periods. However, the approaches used in this study show that more focussed surveys can greatly benefit management strategies aiming to reduce the likelihood of negative impacts by facilitating the development of targeted mitigation measures. It is therefore recommended that these approaches contribute towards EIA within development sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tidal stream turbines could have several direct impacts upon pursuit-diving seabirds foraging within tidal stream environments (mean horizontal current speeds > 2 ms−1), including collisions and displacement. Understanding how foraging seabirds respond to temporally variable but predictable hydrodynamic conditions immediately around devices could identify when interactions between seabirds and devices are most likely to occur; information which would quantify the magnitude of potential impacts, and also facilitate the development of suitable mitigation measures. This study uses shore-based observational surveys and Finite Volume Community Ocean Model outputs to test whether temporally predictable hydrodynamic conditions (horizontal current speeds, water elevation, turbulence) influenced the density of foraging black guillemots Cepphus grylle and European shags Phalacrocorax aristotelis in a tidal stream environment in Orkney, United Kingdom, during the breeding season. These species are particularly vulnerable to interactions with devices due to their tendency to exploit benthic and epi-benthic prey on or near the seabed. The density of both species decreased as a function of horizontal current speeds, whereas the density of black guillemots also decreased as a function of water elevation. These relationships could be linked to higher energetic costs of dives in particularly fast horizontal current speeds (>3 ms−1) and deeper water. Therefore, interactions between these species and moving components seem unlikely at particularly high horizontal current speeds. Combining this information, with that on the rotation rates of moving components at lower horizontal current speeds, could be used to assess collision risk in this site during breeding seasons. It is also likely that moderating any device operation during both lowest water elevation and lowest horizontal current speeds could reduce the risk of collisions for these species in this site during this season. The approaches used in this study could have useful applications within Environmental Impact Assessments, and should be considered when assessing and mitigating negative impacts from specific devices within development sites.