20 resultados para Chemistry, Agricultural.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The calcifying coccolithophores have been proposed as a potentially vulnerable group in the face of increasing surface ocean CO2 levels. A full understanding of the likely responses of this group requires better mechanistic information on pH- and CO2-sensitive processes that underlie cell function at molecular, cellular and population levels. New findings on the mechanisms of pH homeostasis at a molecular and cellular level in both diatoms and coccolithophores are shaping our understanding of how these important groups may respond or acclimate to changing ocean pH. Critical parameters including intracellular pH homeostasis and cell surface pH will be considered. These studies are being carried out in parallel with genetic studies of natural oceanic populations to assess the natural genetic and physiological diversity that will underlie adaptation of populations in the long term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined consequences of the multi-stressors of pH and nutrient availability upon the growth of a marine diatom were investigated. Thalassiosira weissflogii was grown in N- or P-limited batch culture in sealed systems, with pH commencing at 8.2 (extant conditions) or 7.6 (ocean acidification [OA] conditions), and then pH was allowed to either drift with growth, or was held fixed. Results indicated that within the pH range tested, the stability of environmental pH rather than its value (i.e., OA vs. extant) fundamentally influenced biomass accumul-ation and C:N:P stoichiometry. Despite large changes in total alkalinity in the fixed pH systems, final biomass production was consistently greater in these systems than that in drifting pH systems. In drift systems, pH increased to exceed pH 9.5, a level of alkalinity that was inhibitory to growth. No statis-tically significant differences between pH treatments were measured for N:C, P:C or N:P ratios during nutrient-replete growth, although the diatom expre-ssed greater plasticity in P:C and N:P ratios than in N:C during this growth phase. During nutrient-deplete conditions, the capacity for uncoupled carbon fixa-tion at fixed pH was considerably greater than that measured in drift pH systems, leading to strong contrasts in C:N:P stoichiometry between these treatments. Whether environmental pH was stable or drifted directly influenced the extent of physiological stress. In contrast, few distinctions could be drawn between extant versus OA conditions for cell physiology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sea-surface layer is the very upper part of the sea surface where reduced mixing leads to strong gradients in physical, chemical and biological properties1. This surface layer is naturally reactive, containing a complex chemistry of inorganic components and dissolved organic matter (DOM), the latter including amino acids, proteins, fatty acids, carbohydrates, and humic-type components,2 with a high proportion of functional groups such as carbonyls, carboxylic acids and aromatic moieties.3 The different physical and chemical properties of the surface of the ocean compared with bulk seawater, and its function as a gateway for molecules to enter the atmosphere or ocean phase, make this an interesting and important region for study. A number of chemical reactions are believed to occur on and in the surface ocean; these may be important or even dominant sources or sinks of climatically-active marine trace gases. However the sea surface, especially the top 1um to 1mm known as the sea surface microlayer (ssm), is critically under-sampled, so to date much of the evidence for such chemistry comes from laboratory and/or modeling studies. This review discusses the chemical and physical structure of the sea surface, mechanisms for gas transfer across it, and explains the current understanding of trace gas formation at this critical interface between the ocean and atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel-only algal systems are not economically feasible because yields are too low and costs too high for producing microalgal biomass compared to using agricultural residues e.g. straw. Biorefineries which integrate biomass conversion processes and equipment to produce fuels, power and chemicals from biomass, offer a solution. The CO2 microalgae biorefinery (D-Factory) is a 10 million Euro FP7-funded project which will cultivate the microalga Dunaliella in highly saline non-potable waters in photobioreactors and open raceways and apply biorefinery concepts and European innovations in biomass processing technologies to develop a basket of compounds from Dunaliella biomass, including the high value nutraceutical, β-carotene, and glycerol. Glycerol now finds markets both as a green chemical intermediate and as a biofuel in CHP applications as a result of novel combustion technology. Driving down costs by recovering the entire biomass of Dunaliella cells from saline cultivation water poses one of the many challenges for the D-Factory because Dunaliella cells are both motile, and do not possess an external cell wall, making them highly susceptible to cell rupture. Controlling expression of desired metabolic pathways to deliver the desired portfolio of compounds flexibly and sustainably to meet market demand is another. The first prototype D-Factory in Europe will be operational in 48 months, and will serve as a robust manifestation of the business case for global investment in algae biorefineries and in large-scale production of microalgae.