29 resultados para COMPARATIVE PHYLOGEOGRAPHY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review current knowledge and understanding of the biology and ecology of Centropages typicus in the European shelf-seas (e.g. North Sea, English Channel and Bay of Biscay). Our study is based on observations at seven coastal time-series stations as well as on the Continuous Plankton Recorder dataset. This paper focuses on the influence of the environmental parameters (e.g. temperature and Chla) on the life cycle and distribution of C typicus and provides a comparison with its congeneric species C. hamatus and C. chierchiae in the study area. Data on abundance, seasonality and egg production have been used to define the temperature and chlorophyll optima for occurrence and reproduction of Centropages spp. within this region of the European shelf-seas. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacterioplankton of the SAR11 clade are the most abundant microorganisms in marine systems, usually representing 25% or more of the total bacterial cells in seawater worldwide. SAR11 is divided into subclades with distinct spatiotemporal distributions (ecotypes), some of which appear to be specific to deep water. Here we examine the genomic basis for deep ocean distribution of one SAR11 bathytype (depth-specific ecotype), subclade Ic. Four single-cell Ic genomes, with estimated completeness of 55%-86%, were isolated from 770 m at station ALOHA and compared with eight SAR11 surface genomes and metagenomic datasets. Subclade Ic genomes dominated metagenomic fragment recruitment below the euphotic zone. They had similar COG distributions, high local synteny and shared a large number (69%) of orthologous clusters with SAR11 surface genomes, yet were distinct at the 16S rRNA gene and amino-acid level, and formed a separate, monophyletic group in phylogenetic trees. Subclade Ic genomes were enriched in genes associated with membrane/cell wall/envelope biosynthesis and showed evidence of unique phage defenses. The majority of subclade Ic-specfic genes were hypothetical, and some were highly abundant in deep ocean metagenomic data, potentially masking mechanisms for niche differentiation. However, the evidence suggests these organisms have a similar metabolism to their surface counterparts, and that subclade Ic adaptations to the deep ocean do not involve large variations in gene content, but rather more subtle differences previously observed deep ocean genomic data, like preferential amino-acid substitutions, larger coding regions among SAR11 clade orthologs, larger intergenic regions and larger estimated average genome size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the ecological importance of copepods, few Next Generation Sequencing studies (NGS) have been performed on small crustaceans, and a standard method for RNA extraction is lacking. In this study, we compared three commonly-used methods: TRIzol®, Aurum Total RNA Mini Kit and Qiagen RNeasy Micro Kit, in combination with preservation reagents TRIzol® or RNAlater®, to obtain high-quality and quantity of RNA from copepods for NGS. Total RNA was extracted from the copepods Calanus helgolandicus, Centropages typicus and Temora stylifera and its quantity and quality were evaluated using NanoDrop, agarose gel electrophoresis and Agilent Bioanalyzer. Our results demonstrate that preservation of copepods in RNAlater® and extraction with Qiagen RNeasy Micro Kit were the optimal isolation method for high-quality and quantity of RNA for NGS studies of C. helgolandicus. Intriguingly, C. helgolandicus 28S rRNA is formed by two subunits that separate after heat-denaturation and migrate along with 18S rRNA. This unique property of protostome RNA has never been reported in copepods. Overall, our comparative study on RNA extraction protocols will help increase gene expression studies on copepods using high-throughput applications, such as RNA-Seq and microarrays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas’ ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton’s exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change arising from complex combinations of multiple physical drivers, including changes in mixing, circulation and temperature, which act both locally and non-locally through advection.