17 resultados para Bio-Bio_River


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pronounced changes in fauna, extending from the English Channel in the south to the Barents Sea in the north-east and off Greenland in the north-west, have occurred in the late 1920s, the late 1960s and again in the late 1990s. We attribute these events to exchanges of subarctic and subtropical water masses in the north-eastern North Atlantic Ocean, associated with changes in the strength and extent of the subpolar gyre. These exchanges lead to variations in the influence exerted by the subarctic or Lusitanian biomes on the intermediate faunistic zone in the north-eastern Atlantic. This strong and persistent bottom-up bio-physical link is demonstrated using a numerical ocean general circulation model and data on four trophically connected levels in the food chain – phytoplankton, zooplankton, blue whiting, and pilot whales. The plankton data give a unique basin-scale depiction of these changes, and a long pilot whale record from the Faroe Islands offers an exceptional temporal perspective over three centuries. Recent advances in simulating the dynamics of the subpolar gyre suggests a potential for predicting the distribution of the main faunistic zones in the north-eastern Atlantic a few years into the future, which might facilitate a more rational management of the commercially important fisheries in this region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlorophyll-a satellite products are routinely used in oceanography, providing a synoptic and global view of phytoplankton abundance. However, these products lack information on the community structure of the phytoplankton, which is crucial for ecological modelling and ecosystem studies. To assess the usefulness of existing methods to differentiate phytoplankton functional types (PFT) or phytoplankton size classes from satellite data, in-situ phytoplankton samples collected in the Western Iberian coast, on the North-East Atlantic, were analysed for pigments and absorption spectra. Water samples were collected in five different locations, four of which were located near the shore and another in an open-ocean, seamount region. Three different modelling approaches for deriving phytoplankton size classes were applied to the in situ data. Approaches tested provide phytoplankton size class information based on the input of pigments data (Brewin et al., 2010), absorption spectra data (Ciotti et al., 2002) or both (Uitz et al., 2008). Following Uitz et al. (2008), results revealed high variability in microphytoplankton chlorophyll-specific absorption coefficients, ranging from 0.01 to 0.09 m2 (mg chl)− 1 between 400 and 500 nm. This spectral analysis suggested, in one of the regions, the existence of small cells (< 20 μm) in the fraction of phytoplankton presumed to be microphytoplankton (based on diagnostic pigments). Ciotti et al. (2002) approach yielded the highest differences between modelled and measured absorption spectra for the locations where samples had high variability in community structure and cell size. The Brewin et al. (2010) pigment-based model was adjusted and a set of model coefficients are presented and recommended for future studies in offshore water of the Western Iberian coast.