26 resultados para Balearic Islands, western Mediterranean Sea
Resumo:
Regime shifts are abrupt changes encompassing a multitude of physical properties and ecosystem variables, which lead to new regime conditions. Recent investigations focus on the changes in ecosystem diversity and functioning associated to such shifts. Of particular interest, because of the implication on climate drivers, are shifts that occur synchronously in separated basins. In this work we analyze and review long-term records of Mediterranean ecological and hydro-climate variables and find that all point to a synchronous change in the late 1980s. A quantitative synthesis of the literature (including observed oceanic data, models and satellite analyses) shows that these years mark a major change in Mediterranean hydrographic properties, surface circulation, and deep water convection (the Eastern Mediterranean Transient). We provide novel analyses that link local, regional and basin scale hydrological properties with two major indicators of large scale climate, the North Atlantic Oscillation index and the Northern Hemisphere Temperature index, suggesting that the Mediterranean shift is part of a large scale change in the Northern Hemisphere. We provide a simplified scheme of the different effects of climate vs. temperature on pelagic ecosystems.
Resumo:
Long-term variability of the main calycophoran siphonophores was investigated between 1974 and 1999 in a coastal station in the north-western Mediterranean. The data were collected at weekly frequency using a macroplankton net (680 μm mesh size) adapted to quantitatively sample delicate gelatinous plankton. A 3-year collection (1967–1969) of siphonophores from offshore waters using the same methodology showed that the patterns of variability observed inshore were representative of siphonophores’ changes at a regional scale. The aims of the study were: (i) to investigate the patterns of variability that characterised the dominant calycophoran species and assemblages; (ii) to identify the environmental optima that were associated with a significant increase in the dominant siphonophore species and (iii) to verify the influence of hydroclimatic variability on long-term changes of siphonophores. Our results showed that during nearly 3 decades the standing stock of calycophoran siphonophores did not show any significant change, with the annual maximum usually recorded in spring as a result of high densities of the dominant species Lensia subtilis, Muggiaea kochi and Muggiaea atlantica. Nevertheless, major changes in community composition occurred within the calycophoran population. Since the middle 1980s, M. kochi, once the most dominant species, started to decrease allowing other species, the congeneric M. atlantica and Chelophyes appendiculata, to increasingly dominate in spring and summer–autumn, respectively. The comparison of environmental and biotic long-term trends suggests that the decrease of M. kochi was triggered by hydrological changes that occurred in the north-western Mediterranean under the forcing of large-scale climate oscillations. Salinity, water stratification and water temperature were the main hydroclimatic factors associated with a significant increase of siphonophores, different species showing different environmental preferences.
Resumo:
Mediterranean Sea fisheries supply significant local and international markets, based largely on small pelagic fish, artisanal fisheries and aquaculture of finfish (mainly seabass and seabream) and shellfish (mussels and oysters). Fisheries and aquaculture contribute to the economy of countries bordering this sea and provide food and employment to coastal communities employing ca 600,000 people. Increasing temperatures and heat wave frequency are causing stress and mortality in marine organisms and ocean acidification is expected to worsen these effects, especially for bivalves and coralligenous systems. Recruitment and seed production present possible bottlenecks for shellfish aquaculture in the future since early life stages are vulnerable to acidification and warming. Although adult finfish seem able to withstand the projected increases in seawater CO2, degradation of seabed habitats and increases in harmful blooms of algae and jellyfish might adversely affect fish stocks. Ocean acidification should therefore be factored into fisheries and aquaculture management plans. Rising CO2 levels are expected to reduce coastal biodiversity, altering ecosystem functioning and possibly impacting tourism being the Mediterranean the world’s most visited region. We recommend that ocean acidification is monitored in key areas of the Mediterranean Sea, with regular assessments of the likely socio-economic impacts to build adaptive strategies for the Mediterranean countries concerned.
Resumo:
Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species.
Resumo:
Coastal zooplankton have been investigated since 1984 at a Long Term Ecological Research station MC (LTER-MC) in the inner Gulf of Naples (Tyrrhenian Sea, Western Mediterranean). The sampling site, located between the littoral and the open sea systems, has very active hydrography that affects plankton communities. The present work was aimed at establishing whether, in such a dynamic and variable environment, species associations and homogeneous periods could be identified as characteristic and stable features of the mesozooplankton over the period 1984–2006. Hierarchical clustering was applied to assess species associations based on a matrix of similarities between species (R-mode), and homogeneous periods based on a matrix of similarities between observations (Q-mode). The Indicator Value index [IndVal, Dufrene and Legendre (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol. Monogr., 67, 345–366] was calculated to identify species characterizing each period. Five taxonomic groups with well-defined composition and abundance were identified as robust associations that likely reflect different modes of community functioning. The temporal course of these associations was largely shaped by strong seasonal forcing comprising both physical and biological (e.g. trophic) signals. These associations persisted over the long term, thus indicating some stable characters in the Naples zooplankton time-series, providing evidence of resilience in communities in highly variable coastal conditions.
Resumo:
The Mediterranean Sea is located in a crossroad of mid-latitude and subtropical climatic modes that enhance contrasting environmental conditions over both latitudinal and longitudinal ranges. Here, we show that the large-scale environmental forcing is reflected in the basin scale trends of the adult population of the calanoid copepod Centropages typicus. The species is distributed over the whole Mediterranean basin, and maximal abundances were found in the north-western basin associated to oceanic fronts, and in the Adriatic Sea associated to shallow and semi enclosed waters. The peak of main abundances of C. typicus correlates with the latitudinal temperature gradient and the highest seasonal abundances occurred in spring within the 14–18°C temperature window. Such thermal cline may define the latitudinal geographic region where C. typicus seasonally dominates the >200 μm-sized spring copepod community in the Mediterranean Sea. The approach used here is generally applicable to investigate the large-scale spatial patterns of other planktonic organisms and to identify favourable environmental windows for population development.