23 resultados para Artemia nauplii
Resumo:
The vertical distribution, seasonal and ontogenetic migrations and seasonal variability in abundance of Thysanoessa longicaudata (Krøyer) were investigated using the Longhurst-Hardy Plankton Recorder for a 4 yr period (March, 1971 to May, 1975) at Ocean Weather Station “I” (59°00′N; 19°00′W) in the north-eastern Atlantic Ocean. Of 8 species of euphausiids identified at this position, the vast majority were T. longicaudata (for example, 99.5% of the total euphausiids in 1972 belonged to this species). From March to October the majority of calyptopes, furciliae and adults of T. longicaudata were found in the upper 100 m. The major spawning occurred in spring at a water temperature of 9° to 10°C and calyptopes and furciliae appeared in late April, reaching their maximum abundance in May. There was no evidence of large-scale diurnal migrations, although an extensive ontogenetic migration of young developmental stages was observed. The eggs were found from 100 m down to 800 m, the maximum depth of sampling, and the vertical distribution of the three naupliar stages showed a “developmental ascent” as they matured. During the main reproductive period in May, over 70% of all nauplii were below 500 m while more than 94% of Calyptopis Stage I were above 500 m with their maximum abundance in the euphotic zone (0 to 50 m). Calyptopis Stage I is the first feeding stage and it is this stage which shows the largest ontogenetic migration. Brief descriptions of the egg and nauplii are given.
Resumo:
Calanus helgolandicus over-winters in the shallow waters (100 m) of the Celtic Sea as copepodite stages V and VI; the minimum temperature in winter is approximately 8.0°C. This over-wintering is not a true hibernation or dormacy, accompanied by a reduced metabolic state with a discontinuation of feeding and development, but more of a lowered activity, involving reduced feeding and development, with predation on available microzooplankton and detritus. Analysis of specimens from the winter population showed that copepodite stages V and VI were actively feeding and still producing and possibly liberating eggs. The absence of late nauplii and young copepodites in the water column until late March indicated that there must be a high mortality of these winter cohorts. The copepodites of the first generation appeared in April–May, the younger stages, copepodites I to III, being distributed deeper in the water column below the euphotic zone and thermocline. This distribution would contribute to amuch slower rate of development. By August the ontogenetic vertical distributions observed in the copepodites were reversed, the younger stages occuring in the warmer surface layers within the euphotic zone. Diurnal migrations were observed in the later copepodites only, the younger stages I to III either remaining deep in spring or shallow in summer. The causal mechanisms which alter the behaviour of the young copepodites remain unexplained. The development of the population of Calanus helgolandicus in 1978, reaching its peak of abundance in August, was typical for the shelf seas around U.K. as observed from Continuous Plankton Recorder data, 1958 to 1977.
Resumo:
Samples taken in the northern North Sea with the Continuous Plankton Recorder (CPR), the Undulating Oceanographic Recorder (UOR), the Longhurst Hardy Plankton Recorder (LHPR) and by our colleagues from other participating Institutes during the Fladen Ground Experiment (FLEX 76) were used to describe the vertical distribution and population dynamics of Calanus finmarchicus (Gunnerus) and to provide estimates of the production and carbon budget of the population from 19 March to 3 June, 1976. Total production of the 19 March to 3 June, 1976. Total production of the nauplii and copepodite stages (including adults), during the exponential growth phase in May, was estimated to be in the range of 0.49 to 0.91 g C m-2 d-1 or 29.0 to 55 g dry wt m-2 (14.5 to 27.8 g C m-2) for the three successive 10 d periods in May. Two gross growth efficiencies (K 1) (20 and 34%), together with the lower value of C. finmarchicus production, were used to calculate the gross ingestion levels of algae as 2.45 and 1.44 g C m-2 d-1 (73.5 and 43.2 g C m-2 over the May period). These ingestion levels, together with the algae ingested by other zooplankton species, are greater than the estimated total phytoplankton production of 45.9 g C m-2 over the FLEX period. A number of factors are discussed which could explain the discrepancies between the production estimates. One suggestion is that the vertical distribution of the development stages of this herbivorous copepod and their diel and ontogenetic migration patterns enable it to efficiently exploit its food source. Data from the FLEX experiment indicated that the depletion of nutrients limited the size of the spring bloom, but that it was the grazing pressure exerted by C. finmarchicus which was responsible for the control and depletion of the phytoplankton in the spring of 1976 in the northern North Sea.
Resumo:
Samples taken in the northern North Sea with the Continuous Plankton Recorder (CPR), the Undulating Oceanographic Recorder (UOR) and the Longhurst-Hardy Plankton Recorder (LHPR) during the Fladen Ground Experiment in 1976 (FLEX 76) are used to describe the vertical distribution and population dynamics of Thysanoessa inermis (Krøyer) and to provide estimates of the production and carbon budget of the population from 19th March to 3 June 1976. Spawning occurred in late April and early May, in near synchronisation with the start of the spring bloom of phytoplankton. Eggs, nauplii and calyptopes reached maximum abundance in succession, and furciliae were numerous when sampling ceased in early June. Adults increased in length from a mean of 12.1 mm in mid-March to 17.5 mm in early June and the estimated production was 2.40 mg m-3 over the 74 d period. Total carbon ingested by the population of T. inermis was estimated to be 10 mg C m-2 d-1 in the upper 100m which was only 1.5% of the daily primary production of 0.68 gC m-2 measured over the FLEX period 26 March to 4 June 1976. The grazing by T. inermis on the phytoplankton population was assumed to have little effect on the control and depletion of the spring phytoplankton bloom during FLEX 77.
Resumo:
Calanoid copepod eggs have been extracted from intertidal sediments and hatched in the laboratory. Although most of the eggs which hatched did so within < 7 days, the hatching of some continued over a more prolonged period (> 20 days). This indicates that there were a significant number of diapausing or delayed hatching eggs. The species of calanoids present include some of which are known to produce diapausing eggs. Hatching of nauplii from incubated sediment samples was slower than from the extracted eggs indicating dormancy induced by the effects of burial in the sediment. Viability of the eggs has been related to chronic industrial or urban pollution as indicated by polycyclic aromatic hydrocarbon levels. These hatchings were conducted simultaneously with those for cleaner locations. The viability of eggs was significantly depressed in the more heavily polluted sites. An oil spill arising from the grounding of the "Sea Empress" at Milford Haven, UK, in February 1996 has provided a comparison of the impact of an acute situation with these chronic effects. An immediate drastic reduction in viability was followed by a recovery in the year following the spill. The data have provided no evidence for differences in the response to pollution between diapausing and subitaneous eggs.
Resumo:
The present investigation reviews published data on the feeding rates and prey selection of Oithona similis females, Calanus finmarchicus nauplii and females in the Irminger Sea in April/May and July/August 2002. Our aim was to examine how the feeding rates and prey selection of these three copepod stages respond to concomitant changes in microplankton community composition and prey abundance. Copepods typically ingested prey overall according to its ambient concentration although significant species and stage-specific differences in prey-type ingestion and selection were apparent. Despite being of comparable weight, the ingestion rates of C. finmarchicus nauplii were always higher than those of the O. similis females. Moreover, C. finmarchicus nauplii and O. similis females fed preferentially on diatoms and ciliates respectively, whereas adult female C. finmarchicus showed limited prey selectivity. Copepod grazing impact on total and on ciliates/dinoflagellates standing stock was <0.5 and <2%, respectively. We attribute this result to a combination of low grazing rates, low copepod abundance and low microplankton biomass, all of which are indicative of the non-bloom conditions under which these experiments were conducted. The differences in copepod feeding rates and prey selection we report reflect species and stage-specific eco-physiological adaptations, which may act as important driving forces for marine ecosystem structuring and functioning.
Resumo:
Climate effects have been shown to be at least partly responsible for the reorganisation in the plankton ecosystem on the shelf seas of NW Europe over the last 50 years. Most fish larvae feed primarily on zooplankton, so changes in zooplankton quantity, quality and seasonal timing have been hypothesized to be a key factor affecting their survival. To investigate this we have implemented a 1-dimensional trophodynamic growth model of cod larvae for the waters around the UK covering the period 1960 to 2003. Larval growth is modelled as the difference between the amount of food absorbed by the larva and its various metabolic costs. Prey availability is based upon the biomass and size of available preys (i.e. adults and nauplii copepods and cladocerans) taken from the Continuous Plankton Recorder dataset. Temperature and wind forcing are also taken into account. Results suggest that observed changes in plankton community structure may have had less impact than previously suggested. This is because changes in prey availability may be compensated for by increased temperatures resulting in little overall impact on potential larval growth. Stock recovery, at least in the short term is likely to be more dependent upon conserving the year classes recruited to allow spawning stock biomass to rebuild. If as our model suggests, the larvae are still able to survive in the changing environment, reduction in fishing on the adults is needed to allow the stock to recover.
Resumo:
Understanding how copepods may respond to ocean acidification (OA) is critical for risk assessments of ocean ecology and biogeochemistry. The perception that copepods are insensitive to OA is largely based on experiments with adult females. Their apparent resilience to increased carbon dioxide (pCO2 ) concentrations has supported the view that copepods are 'winners' under OA. Here, we show that this conclusion is not robust, that sensitivity across different life stages is significantly misrepresented by studies solely using adult females. Stage-specific responses to pCO2 (385-6000 μatm) were studied across different life stages of a calanoid copepod, monitoring for lethal and sublethal responses. Mortality rates varied significantly across the different life stages, with nauplii showing the highest lethal effects; nauplii mortality rates increased threefold when pCO2 concentrations reached 1000 μatm (year 2100 scenario) with LC50 at 1084 μatm pCO2 . In comparison, eggs, early copepodite stages, and adult males and females were not affected lethally until pCO2 concentrations ≥3000 μatm. Adverse effects on reproduction were found, with >35% decline in nauplii recruitment at 1000 μatm pCO2 . This suppression of reproductive scope, coupled with the decreased survival of early stage progeny at this pCO2 concentration, has clear potential to damage population growth dynamics in this species. The disparity in responses seen across the different developmental stages emphasizes the need for a holistic life-cycle approach to make species-level projections to climate change. Significant misrepresentation and error propagation can develop from studies which attempt to project outcomes to future OA conditions solely based on single life history stage exposures.