20 resultados para Arjo Wiggins Fine Papers
Resumo:
Ocean acidification has been suggested as a serious threat to the future existence of cold-water corals (CWC). However, there are few fine-scale temporal and spatial datasets of carbonate and nutrients conditions available for these reefs, which can provide a baseline definition of extant conditions. Here we provide observational data from four different sites in the northeast Atlantic that are known habitats for CWC. These habitats differ by depth and by the nature of the coral habitat. At depths where CWC are known to occur across these sites the dissolved inorganic carbon ranged from 2088 to 2186 μmol kg−1, alkalinity ranged from 2299 to 2346 μmol kg−1, and aragonite Ω ranged from 1.35 to 2.44. At two sites fine-scale hydrodynamics caused increased variability in the carbonate and nutrient conditions over daily time-scales. The observed high level of variability must be taken into account when assessing CWC sensitivities to future environmental change.
Resumo:
Abyssal benthic foraminifera have been maintained alive for periods of several weeks under laboratory simulated deep-sea conditions of high pressure and low temperature. In separate experiments, bacterial-sized fluorescent microspheres and three species of microalgae were supplied as food particles. Subsequent light and electron microscopy showed that the algae had been ingested by several foraminiferal species. Furthermore, the fine structure of the foraminiferal cytoplasm was well-preserved which indicates, along with the ingestion of algal food, that they had remained in a viable condition during the incubation. Other observations indicate that abyssal benthic foraminifera ingest naturally occurring photosynthetic cells carried to the deep-sea bed by rapidly sedimenting aggregates. The ability to keep foraminifera originating from depths exceeding 4000 m alive in the laboratory paves the way for the experimental investigation of some important issues in deep-sea biology and palaeoceanography.
Resumo:
The rapid increase in the number of tidal stream turbine arrays will create novel and unprecedented levels of anthropogenic activity within habitats characterized by horizontal current speeds exceeding 2 ms−1. However, the potential impacts on pursuit‐diving seabirds exploiting these tidal stream environments remain largely unknown. Identifying similarities between the fine‐scale physical features (100s of metres) suitable for array installations, and those associated with foraging pursuit‐diving seabirds, could identify which species are most vulnerable to either collisions with moving components, or displacement from these installations. A combination of vessel‐based observational surveys, Finite Volume Community Ocean Model outputs and hydroacoustic seabed surveys provided concurrent measures of foraging distributions and physical characteristics at a fine temporal (15 min) and spatial (500 m) resolution across a tidal stream environment suitable for array installations, during both breeding and non‐breeding seasons. These data sets were then used to test for associations between foraging pursuit‐diving seabirds (Atlantic puffins Fratercula arctica, black guillemots Cepphus grylle, common guillemots Uria aalge, European shags Phalacrocorax aristotelis) and physical features. These species were associated with areas of fast horizontal currents, slow horizontal currents, high turbulence, downward vertical currents and also hard–rough seabeds. The identity and strength of associations differed among species, and also within species between seasons, indicative of interspecific and intraspecific variations in habitat use. However, Atlantic puffins were associated particularly strongly with areas of fast horizontal currents during breeding seasons, and European shags with areas of rough–hard seabeds and downward vertical currents during non‐breeding seasons. Synthesis and applications. Atlantic puffins’ strong association with fast horizontal current speeds indicates that they are particularly likely to interact with installations during breeding seasons. Any post‐installation monitoring and mitigation measures should therefore focus on this species and season. The multi‐species associations with high turbulence and downward vertical currents, which often coincide with fast horizontal current speeds, also highlight useful pre‐installation mitigation measures via the omission of devices from these areas, reducing the overall likelihood of interactions. Environmental impact assessments (EIA) generally involve once‐a‐month surveys across 2‐year periods. However, the approaches used in this study show that more focussed surveys can greatly benefit management strategies aiming to reduce the likelihood of negative impacts by facilitating the development of targeted mitigation measures. It is therefore recommended that these approaches contribute towards EIA within development sites.