113 resultados para Amphipod communities
Resumo:
The effect of elevated pCO(2)/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567A degrees N, 4.1277A degrees W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (a"broken vertical bar(calc) = 0.78, a"broken vertical bar(ara) = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO(2) can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO(2)-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.
Resumo:
The way in which total secondary production is partitioned amongst species in various macrofauna communities (Amphiura, Venus, Abra, Modiolus) around the British Isles is discussed. When the proportion of total production is plotted for each species, ranked in order of productive importance, curves are produced which are characteristic of particular physical conditions. The shapes of the curves are independent of the actual species involved, but depend on the proportion of individuals in the community which adopt a particular feeding behaviour, and the scope for diversification within trophic groups. The form of these curves correlates closely with bottom currents and associated bed-stresses, since these affect both the nature of the food supply to bottom animals and the nature of the substrate. These observations have important implications for the structure and functioning of benthic communities. Comparison of production partitioning in the meiofauna of mud and sand substrates indicates a remarkable similarity within trophic groups although the partitioning of production between trophic groups is very different. The shapes of production-rank curves again appear to depend on the scope for diversification within trophic groups. In the meiofauna resources are partitioned more equitably than in the macrofauna. There is a marked discontinuity in the lognormal distribution of body sizes within integrated benthic communities at the meiofauna-macrofauna size boundary.
Resumo:
Grab and dredge samples have been collected on a grid of 155 sublittoral stations in the Bristol Channel. The faunal data have been analysed using a hierarchical sorting technique to cluster stations with similar species compositions. At a similarity level of 18%, groups of stations with a species composition similar to the classical Petersen communities were defined. Three of Petersen's communities were recognized in the outer part of the Channel, the Venus, Abra and Modiolus communities. The fauna of the inner part of the Channel is reduced and does not correspond with any previously recognized community type. Possible causes for this faunal reduction are discussed. The substrate distribution and the macrofaunal community distribution are mapped. Side-scan sonograms are shown to be a useful adjunct to the interpretation of faunal distributions.