18 resultados para 2415: equatorial ionosphere


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The measurement of phytoplankton carbon (Cphyto) in the field has been a long-sought but elusive goal in oceanography. Proxy measurements of Cphyto have been employed in the past, but are subject to many confounding influences that undermine their accuracy. Here we report the first directly measured Cphyto values from the open ocean. The Cphyto samples were collected from a diversity of environments, ranging from Pacific and Atlantic oligotrophic gyres to equatorial upwelling systems to temperate spring conditions. When compared to earlier proxies, direct measurements of Cphyto exhibit the strongest relationship with particulate backscattering coefficients (bbp) (R2=0.69). Chlorophyll concentration and total particulate organic carbon (POC) concentration accounted for ~20% less variability in Cphyto than bbp. Ratios of Cphyto to Chl a span an order of magnitude moving across and within distinct ecosystems. Similarly, Cphyto:POC ratios were variable with the lowest values coming from productive temperate waters and the highest from oligotrophic gyres. A strong relationship between Cphyto and bbp is particularly significant because bbp is a property retrievable from satellite ocean color measurements. Our results, therefore, are highly encouraging for the global monitoring of phytoplankton biomass from space. The continued application of our Cphyto measurement approach will enable validation of satellite retrievals and contribute to an improved understanding of environmental controls on phytoplankton biomass and physiology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytoplankton total chlorophyll concentration (TCHLa) and phytoplankton size structure are two important ecological indicators in biological oceanography. Using high performance liquid chromatography (HPLC) pigment data, collected from surface waters along the Atlantic Meridional Transect (AMT), we examine temporal changes in TCHLa and phytoplankton size class (PSC: micro-, nano- and pico-phytoplankton) between 2003 and 2010 (September to November cruises only), in three ecological provinces of the Atlantic Ocean. The HPLC data indicate no significant change in TCHLa in northern and equatorial provinces, and an increase in the southern province. These changes were not significantly different to changes in TCHLa derived using satellite ocean-colour data over the same study period. Despite no change in AMT TCHLa in northern and equatorial provinces, significant differences in PSC were observed, related to changes in key diagnostic pigments (fucoxanthin, peridinin, 19′-hexanoyloxyfucoxanthin and zeaxanthin), with an increase in small cells (nano- and pico-phytoplankton) and a decrease in larger cells (micro-phytoplankton). When fitting a three-component model of phytoplankton size structure — designed to quantify the relationship between PSC and TCHLa to each AMT cruise, model parameters varied over the study period. Changes in the relationship between PSC and TCHLa have wide implications in ecology and marine biogeochemistry, and provide key information for the development and use of empirical ocean-colour algorithms. Results illustrate the importance of maintaining a time-series of in-situ observations in remote regions of the ocean, such as that acquired in the AMT programme.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current global inventories of ammonia emissions identify the ocean as the largest natural source. This source depends on seawater pH, temperature, and the concentration of total seawater ammonia (NHx(sw)), which reflects a balance between remineralization of organic matter, uptake by plankton, and nitrification. Here we compare [NHx(sw)] from two global ocean biogeochemical models (BEC and COBALT) against extensive ocean observations. Simulated [NHx(sw)] are generally biased high. Improved simulation can be achieved in COBALT by increasing the plankton affinity for NHx within observed ranges. The resulting global ocean emissions is 2.5 TgN a−1, much lower than current literature values (7–23 TgN a−1), including the widely used Global Emissions InitiAtive (GEIA) inventory (8 TgN a−1). Such a weak ocean source implies that continental sources contribute more than half of atmospheric NHx over most of the ocean in the Northern Hemisphere. Ammonia emitted from oceanic sources is insufficient to neutralize sulfate aerosol acidity, consistent with observations. There is evidence over the Equatorial Pacific for a missing source of atmospheric ammonia that could be due to photolysis of marine organic nitrogen at the ocean surface or in the atmosphere. Accommodating this possible missing source yields a global ocean emission of ammonia in the range 2–5 TgN a−1, comparable in magnitude to other natural sources from open fires and soils.