527 resultados para Marine sciences.
Resumo:
Phytoplankton photosynthesis links global ocean biology and climate-driven fluctuations in the physical environment. These interactions are largely expressed through changes in phytoplankton physiology, but physiological status has proven extremely challenging to characterize globally. Phytoplankton fluorescence does provide a rich source of physiological information long exploited in laboratory and field studies, and is now observed from space. Here we evaluate the physiological underpinnings of global variations in satellite-based phytoplankton chlorophyll fluorescence. The three dominant factors influencing fluorescence distributions are chlorophyll concentration, pigment packaging effects on light absorption, and light-dependent energy-quenching processes. After accounting for these three factors, resultant global distributions of quenching-corrected fluorescence quantum yields reveal a striking consistency with anticipated patterns of iron availability. High fluorescence quantum yields are typically found in low iron waters, while low quantum yields dominate regions where other environmental factors are most limiting to phytoplankton growth. Specific properties of photosynthetic membranes are discussed that provide a mechanistic view linking iron stress to satellite-detected fluorescence. Our results present satellite-based fluorescence as a valuable tool for evaluating nutrient stress predictions in ocean ecosystem models and give the first synoptic observational evidence that iron plays an important role in seasonal phytoplankton dynamics of the Indian Ocean. Satellite fluorescence may also provide a path for monitoring climate-phytoplankton physiology interactions and improving descriptions of phytoplankton light use efficiencies in ocean productivity models.
Resumo:
We used a numerical model to investigate if and to what extent cellular photoprotective capacity accounts for succession and vertical distribution of marine phytoplankton species/groups. A model describing xanthophyll photoprotective activity in phytoplankton has been implemented in the European Regional Sea Ecosystem Model and applied at the station L4 in the Western English Channel. Primary producers were subdivided into three phytoplankton functional types defined in terms of their capacity to acclimate to different light-specific environments: low light (LL-type), high light (HL-type) and variable light (VL-type) adapted species. The LL-type is assumed to have low cellular level of xanthophyll-cycling pigments (PX) relative to the modelled photosynthetically active pigments (chlorophyll and fucoxanthin (FUCO) = PSP). The HL-type has high PX content relative to PSP while VL-type presents an intermediate PX to PSP ratio. Furthermore, the VL-type is capable of reversibly converting FUCO to PX and synthesizing new PX under high-light stress. In order to reproduce phytoplankton community succession with each of the three groups being dominant in different periods of the year, we had also to assume reduced grazing pressure on HL-adapted species. Model simulations realistically reproduce the observed seasonal patterns of pigments and nutrients highlighting the reasonability of the underpinning assumptions. Our model suggests that pigment-mediated photophysiology plays a primary role in determining the evolution of marine phytoplankton communities in the winter-spring period corresponding to the shoaling of the mixed layer and the increase of light intensity. Grazing selectivity however contributes to the phytoplankton community composition in summer.
Resumo:
Cold-water corals are associated with high local biodiversity, but despite their importance as ecosystem engineers, little is known about how these organisms will respond to projected ocean acidification. Since preindustrial times, average ocean pH has decreased from 8.2 to ~8.1, and predicted CO2 emissions will decrease by up to another 0.3 pH units by the end of the century. This decrease in pH may have a wide range of impacts upon marine life, and in particular upon calcifiers such as cold-water corals. Lophelia pertusa is the most widespread cold-water coral (CWC) species, frequently found in the North Atlantic. Here, we present the first short-term (21 days) data on the effects of increased CO2 (750 ppm) upon the metabolism of freshly collected L. pertusa from Mingulay Reef Complex, Scotland, for comparison with net calcification. Over 21 days, corals exposed to increased CO2 conditions had significantly lower respiration rates (11.4±1.39 SE, µmol O2 g−1 tissue dry weight h−1) than corals in control conditions (28.6±7.30 SE µmol O2 g−1 tissue dry weight h−1). There was no corresponding change in calcification rates between treatments, measured using the alkalinity anomaly technique and 14C uptake. The decrease in respiration rate and maintenance of calcification rate indicates an energetic imbalance, likely facilitated by utilisation of lipid reserves. These data from freshly collected L. pertusa from the Mingulay Reef Complex will help define the impact of ocean acidification upon the growth, physiology and structural integrity of this key reef framework forming species.
Resumo:
Many marine habitats, such as the surface and tissues of marine invertebrates, including corals, harbour diverse populations of microorganisms, which are thought to play a role in the health of their hosts and influence mutualistic and competitive interactions. Investigating the presence and stability of quorum sensing (QS) in these ecosystems may shed light on the roles and control of these bacterial communities. Samples of 13 cnidarian species were screened for the presence and diversity of N-acyl-homoserine lactones (AHLs; a prevalent type of QS molecule) using thin-layer chromatography and an Agrobacterium tumefaciens NTL4 biosensor. Ten of 13 were found to harbour species-specific, conserved AHL profiles. AHLs were confirmed in Anemonia viridis using liquid chromatography tandem mass spectrometry. To assess temporal role and stability, AHLs were investigated in A. viridis from intertidal pools over 16 h. Patterns of AHLs showed conserved profiles except for two mid-chain length AHLs, which increased significantly over the day, peaking at 20:00, but had no correlation with pool chemistry. Denaturing gel electrophoresis of RT-PCR-amplified bacterial 16S rRNA showed the presence of an active bacterial community that changed in composition alongside AHL profiles and contained a number of bands that affiliate with known AHL-producing bacteria. Investigations into the quorum sensing-controlled, species-specific roles of these bacterial communities and how these regulatory circuits are influenced by the coral host and members of the bacterial community are imperative to expand our knowledge of these interactions with respect to the maintenance of coral health.
Resumo:
Ocean acidification influences sediment/water nitrogen fluxes, possibly by impacting on the microbial process of ammonia oxidation. To investigate this further, undisturbed sediment cores collected from Ny Alesund harbour (Svalbard) were incubated with seawater adjusted to CO2 concentrations of 380, 540, 760, 1,120 and 3,000 μatm. DNA and RNA were extracted from the sediment surface after 14 days' exposure and the abundance of bacterial and archaeal ammonia oxidising (amoA) genes and transcripts quantified using quantitative polymerase chain reaction. While there was no change to the abundance of bacterial amoA genes, an increase to 760 μatm pCO2 reduced the abundance of bacterial amoA transcripts by 65 %, and this was accompanied by a shift in the composition of the active community. In contrast, archaeal amoA gene and transcript abundance both doubled at 3,000 μatm, with an increase in species richness also apparent. This suggests that ammonia oxidising bacteria and archaea in marine sediments have different pH optima, and the impact of elevated CO2 on N cycling may be dependent on the relative abundances of these two major microbial groups. Further evidence of a shift in the balance of key N cycling groups was also evident: the abundance of nirS-type denitrifier transcripts decreased alongside bacterial amoA transcripts, indicating that NO3 − produced by bacterial nitrification fuelled denitrification. An increase in the abundance of Planctomycete-specific 16S rRNA, the vastmajority of which grouped with known anammox bacteria, was also apparent at 3,000 μatm pCO2. This could indicate a possible shift from coupled nitrification–denitrification to anammox activity at elevated CO2.
Resumo:
The ubiquitous marine trace gas dimethyl sulphide (DMS) comprises the greatest natural source of sulphur to the atmosphere and is a key player in atmospheric chemistry and climate. We explore the short term response of DMS and its algal precursor dimethyl sulphoniopropionate (DMSP) production and cycling to elevated carbon dioxide (CO2) and ocean acidification (OA) in five highly replicated 96 h shipboard bioassay experiments from contrasting sites in NW European shelf waters. In general, the response to OA throughout this region showed little variation, despite encompassing a range of biological and biogeochemical conditions. We observed consistent and marked increases in DMS concentrations relative to ambient controls, and decreases in DMSP concentrations. Quantification of rates of specific DMSP synthesis by phytoplankton and bacterial DMS gross production/consumption suggest algal processes dominated the CO2 response, likely due to a physiological response manifested as increases in direct cellular exudation of DMS and/or DMSP lyase enzyme activities. The variables and rates we report increase our understanding of the processes behind the response to OA. This could provide the opportunity to improve upon mesocosm-derived empirical modelling relationships, and move towards a mechanistic approach for predicting future DMS concentrations.
Resumo:
During viral infection of Emiliania huxleyi, laboratory studies have shown that photo-system (PS) II efficiency declines during the days post-infection and is thought to be associated with viral-induced interruption of electron transport rates between photosystems. However,measuring the impact of viral infection on PSII function in E. huxleyi populations from natural,taxonomically diverse phytoplankton communities is difficult, and whether this phenomenon occurs in nature is presently unknown. Here, chlorophyll fluorescence analysis was used to assess changes in PSII efficiency throughout an E. huxleyi bloom during a mesocosm experiment off the coast of Norway. Specifically, we aimed to determine whether a measurable suppression of the efficiency of PSII photochemistry could be observed due to viral infection of the natural E. huxleyi populations. During the major infection period prior to bloom collapse, there was a significant reduction in PSII efficiency with an average decrease in maximum PSII photochemical efficiency (Fv/Fm) of 17% and a corresponding 75% increase in maximum PSII effective absorption cross section(σPSII); this was concurrent with a significant decrease in E. huxleyi growth rates and an increase in E. huxleyi virus (EhV) production. As E. huxleyi populations dominated the phytoplankton community and potentially contributed up to 100% of the chlorophyll a pool, we believe that the variable chlorophyll fluorescence signal measured during this period was derived predominantly from E. huxleyi and, thus, reflects changes occurring within E. huxleyi cells. This is the first demonstration of suppression of PSII photochemistry occurring during viral infection of natural coccolithophore populations.
Resumo:
Despite the global oceanic distribution and recognized biogeochemical impact of coccolithoviruses (EhV), their diversity remains poorly understood. Here we employed a metagenomic approach to study the occurrence and progression of natural EhV community genomic variability. Analysis of EhV metagenomes from the early and late stages of an induced bloom led to three main discoveries. First, we observed resilient and specific genomic signatures in the EhV community associated with the Norwegian coast, which reinforce the existence of limitations to the capacity of dispersal and genomic exchange among EhV populations. Second, we identified a hyper-variable region (approximately 21 kbp long) in the coccolithovirus genome. Third, we observed a clear trend for EhV relative amino-acid diversity to reduce from early to late stages of the bloom. This study validated two new methodological combinations, and proved very useful in the discovery of new genomic features associated with coccolithovirus natural communities.
Resumo:
Copepods of the genus Calanus are key zooplankton species in temperate to arctic marine ecosystems. Despite their ecological importance, species identification remains challenging. Furthermore, the recent report of hybrids among Calanus species highlights the need for diagnostic nuclear markers to efficiently identify parental species and hybrids. Using next-generation sequencing analysis of both the genome and transcriptome from two sibling species, Calanus finmarchicus and Calanus glacialis, we developed a panel of 12 nuclear insertion/deletion markers. All the markers showed species-specific amplicon length. Furthermore, most of the markers were successfully amplified in other Calanus species, allowing the molecular identification of Calanus helgolandicus, Calanus hyperboreus and Calanus marshallae.
Resumo:
Understanding how copepods may respond to ocean acidification (OA) is critical for risk assessments of ocean ecology and biogeochemistry. The perception that copepods are insensitive to OA is largely based on experiments with adult females. Their apparent resilience to increased carbon dioxide (pCO2 ) concentrations has supported the view that copepods are 'winners' under OA. Here, we show that this conclusion is not robust, that sensitivity across different life stages is significantly misrepresented by studies solely using adult females. Stage-specific responses to pCO2 (385-6000 μatm) were studied across different life stages of a calanoid copepod, monitoring for lethal and sublethal responses. Mortality rates varied significantly across the different life stages, with nauplii showing the highest lethal effects; nauplii mortality rates increased threefold when pCO2 concentrations reached 1000 μatm (year 2100 scenario) with LC50 at 1084 μatm pCO2 . In comparison, eggs, early copepodite stages, and adult males and females were not affected lethally until pCO2 concentrations ≥3000 μatm. Adverse effects on reproduction were found, with >35% decline in nauplii recruitment at 1000 μatm pCO2 . This suppression of reproductive scope, coupled with the decreased survival of early stage progeny at this pCO2 concentration, has clear potential to damage population growth dynamics in this species. The disparity in responses seen across the different developmental stages emphasizes the need for a holistic life-cycle approach to make species-level projections to climate change. Significant misrepresentation and error propagation can develop from studies which attempt to project outcomes to future OA conditions solely based on single life history stage exposures.
Resumo:
The European Marine Board recently published a position paper on linking oceans and human health as a strategic research priority for Europe. With this position paper as a reference, the March 2014 Cornwall Oceans and Human Health Workshop brought together key scientists, policy makers, funders, business, and non governmental organisations from Europe and the US to review the recent interdisciplinary and cutting edge research in oceans and human health specifically the growing evidence of the impacts of oceans and seas on human health and wellbeing (and the effects of humans on the oceans). These impacts are a complex mixture of negative influences (e.g. from climate change and extreme weather to harmful algal blooms and chemical pollution) and beneficial factors (e.g. from natural products including seafood to marine renewable energy and wellbeing from interactions with coastal environments). Integrated approaches across disciplines, institutions, and nations in science and policy are needed to protect both the oceans and human health and wellbeing now and in the future.
Resumo:
Acetone is an important oxygenated volatile organic compound (OVOC) in the troposphere where it influences the oxidizing capacity of the atmosphere. However, the air-sea flux is not well quantified, in part due to a lack of knowledge regarding which processes control oceanic concentrations, and, specifically whether microbial oxidation to CO2 represents a significant loss process. We demonstrate that 14C labeled acetone can be used to determine microbial oxidation to 14CO2. Linear microbial rates of acetone oxidation to CO2 were observed for between 0.75-3.5 h at a seasonally eutrophic coastal station located in the western English Channel (L4). A kinetic experiment in summer at station L4 gave a Vmax of 4.1 pmol L-1 h-1, with a Km constant of 54 pM. We then used this technique to obtain microbial acetone loss rates ranging between 1.2 and 42 pmol L-1 h-1.(monthly averages) over an annual cycle at L4, with maximum rates observed during winter months. The biological turnover time of acetone (in situ concentration divided by microbial oxidation rate) in surface waters varied from ~3 days in February 2011, when in situ concentrations were 3 ± 1 nM, to >240 days in June 2011, when concentrations were more than twofold higher at 7.5 ± 0.7 nM. These relatively low marine microbial acetone oxidation rates, when normalized to in situ concentrations, suggest that marine microbes preferentially utilize other OVOCs such as methanol and acetaldehyde.
Resumo:
The TetraEther indeX of 86 carbon atoms (TEX86) temperature proxy is widely used in reconstructions of past sea surface temperature. Most current calibrations are based on surface sediment distributions of the glycerol dialkyl glycerol tetraether lipids (GDGTs) that comprise TEX86 and assume that these GDGTs are exported from the upper mixed layer. However, GDGT export from deeper waters could impact sedimentary GDGT distributions and therefore TEX86 paleothermometry. Here we examine GDGT distributions in suspended particulate matter (SPM) and underlying sediments collected from the Southeast Atlantic Ocean. Our results reveal different GDGT distributions - specifically the ratio between GDGTs bearing 2 vs. 3 cyclopentyl moieties, [2/3] ratios - between surface, subsurface (>50-200 m) and deep water (>200 m) SPM, which suggests the occurrence of in situ (deep) production that is not apparent when considering TEX86. The GDGT distributions in sediments match those of subsurface waters rather than surface waters, suggesting that they have not been preferentially derived from the upper mixed layer; this is consistent with GDGT abundances being highest in shallow subsurface SPM (˜100 to 200 m). It remains unclear what governs the different [2/3] ratios throughout the water column, but it is likely related to a combination of temperature and thaumarchaeotal community structure.
Resumo:
Volcanic eruptions have been hypothesized as an iron supply mechanism for phytoplankton blooms; however, little direct evidence of stimulatory responses has been obtained in the field. Here we present the results of twenty-one 1–2 day bottle enrichment experiments from cruises in the South Atlantic and Southern Ocean which conclusively demonstrated a photophysiological and biomass stimulation of phytoplankton communities following supply of basaltic or rhyolitic volcanic ash. Furthermore, experiments in the Southern Ocean demonstrated significant phytoplankton community responses to volcanic ash supply in the absence of responses to addition of dissolved iron alone. At these sites, dissolved manganese concentrations were among the lowest ever measured in seawater, and we therefore suggest that the enhanced response to ash may have been a result of the relief of manganese (co)limitation. Our results imply that volcanic ash deposition events could trigger extensive phytoplankton blooms, potentially capable of significant impacts on regional carbon cycling.
Resumo:
The biogeochemical cycle of zinc (Zn) in the South Atlantic, at 40°S, was investigated as part of the UK GEOTRACES program. To date there is little understanding of the supply of Zn, an essential requirement for phytoplankton growth, to this highly productive region. Vertical Zn profiles displayed nutrient-like distributions with distinct gradients associated with the watermasses present. Surface Zn concentrations are among the lowest reported for theworld’s oceans (<50 pM). A strong Zn-Si linear relationshipwas observed (Zn (nM)= 0.065 Si (μM), r2=0.97, n = 460). Our results suggest that the use of a global Zn-Si relationship would lead to an underestimation of dissolved Zn in deeper waters of the South Atlantic. By utilizing Si* and a new tracer Zn* our data indicate that the preferential removal of Zn in the Southern Ocean prevented a direct return path for dissolved Zn to the surface waters of the South Atlantic at 40°S and potentially the thermocline waters of the South Atlantic subtropical gyre. The importance of Zn for phytoplankton growth was evaluated using the Zn-soluble reactive phosphorus (SRP) relationship. We hypothesize that the low Zn concentrations in the South Atlantic may select for phytoplankton cells with a lower Zn requirement. In addition, a much deeper kink at ~ 500m in the Zn:SRP ratio was observed compared to other oceanic regions.