174 resultados para ecosystem gamification
Resumo:
Executive Summary The programme of work was commissioned in September 1998 to supply information to underpin the UK’s commitments to protection and conservation of the ecosystems and biodiversity of the marine environment under the 1992 OSPAR Convention on the Protection of the Marine Environment of the North East Atlantic. The programme also provided support for the implementation of the Biodiversity Convention and the EU Habitats Directive. The MarLIN programme initiated a new approach to assessing sensitivity and recoverability characteristics of seabed species and biotopes based on structures (such as the seabed biotopes classification) and criteria (such as for assessing rarity and defining ‘sensitivity’) developed since 1997. It also developed tools to disseminate the information on the Internet. The species researched were those that were listed in conventions and directives, included in Biodiversity Action Plans, or were nationally rare or scarce. In addition, species were researched if they maintained community composition or structure and/or provided a distinctive habitat or were special to or especially abundant in a particular situation or biotope At its conclusion in August 2001, the work carried out under the contract with DETR/DEFRA had: · Developed protocols, criteria and structures for identifying ‘sensitivity’ and ‘recoverability’, which were tested by a programme management group. · Developed a database to hold research data on biology and sensitivity of species and biotopes. · Defined the link between human activities and the environmental factors likely to be affected by those activities. · Developed a user-friendly Web site to access information from the database, on the sensitivity and recoverability characteristics of over 100 species and basic information on over 200 species. Additionally, the project team have: · Brought together and facilitated discussion between current developers and users of electronic resources for environmental management, protection and education in the conference ‘Using Marine Biological Information in the Electronic Age’ (19-21 July 1999). · Contributed to the development of Ecological Quality Objectives for the North Sea (Scheveningen, 11- 3 September 1999 and subsequent papers). · Provided detailed information on species as a supplement to the National Biodiversity Network Gateway demonstration www.searchnbn.net. · Developed a peer-reviewed approach to electronic publication of updateable information. · Promoted the contract results and the MarLIN approach to the support of marine environmental management and protection at European research fora and, through the web site, internationally. The information available through the Web site is now being used by consultants and Government agencies. The DEFRA contract has been of critical importance in establishing the Marine Life Information Network (MarLIN) programme and has encouraged support from other organisations. Other related work in the MarLIN programme is on-going, especially to identify sensitivity of biotopes to support management of SACs (contract from English Nature in collaboration with Scottish Natural Heritage), to access data sources (in collaboration with the National Biodiversity Network) and to establish volunteer recording schemes for marine life. The results of the programme are best viewed on the Web site (www.marlin.ac.uk). Three reports have been produced during the project. A final report detailing the work undertaken, a brochure ‘Identifying the sensitivity of seabed ecosystems’ and a CD-ROM describing the programme and demonstrating the Web site have been delivered as final products in addition to the Web site.
Resumo:
Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.
Resumo:
Marine Protected Areas (MPAs) are widely used as tools to maintain biodiversity, protect habitats and ensure that development is sustainable. If MPAs are to maintain their role into the future it is important for managers to understand how conditions at these sites may change as a result of climate change and other drivers, and this understanding needs to extend beyond temperature to a range of key ecosystem indicators. This case study demonstrates how spatially-aggregated model results for multiple variables can provide useful projections for MPA planners and managers. Conditions in European MPAs have been projected for the 2040s using unmitigated and globally managed scenarios of climate change and river management, and hence high and low emissions of greenhouse gases and riverborne nutrients. The results highlight the vulnerability of potential refuge sites in the north-west Mediterranean and the need for careful monitoring at MPAs to the north and west of the British Isles, which may be affected by changes in Atlantic circulation patterns. The projections also support the need for more MPAs in the eastern Mediterranean and Adriatic Sea, and can inform the selection of sites.
Resumo:
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.
Resumo:
Ecosystem reconfigurations arising from climate-driven changes in species distributions are expected to have profound ecological, social, and economic implications. Here we reveal a rapid climate-driven regime shift of Australian temperate reef communities, which lost their defining kelp forests and became dominated by persistent seaweed turfs. After decades of ocean warming, extreme marine heat waves forced a 100-kilometer range contraction of extensive kelp forests and saw temperate species replaced by seaweeds, invertebrates, corals, and fishes characteristic of subtropical and tropical waters. This community-wide tropicalization fundamentally altered key ecological processes, suppressing the recovery of kelp forests.
Resumo:
Biogenic reefs are important for habitat provision and coastal protection. Long-term datasets on the distribution and abundance of Sabellaria alveolata (L.) are available from Britain. The aim of this study was to combine historical records and contemporary data to (1) describe spatiotemporal variation in winter temperatures, (2) document short-term and long-term changes in the distribution and abundance of S. alveolata and discuss these changes in relation to extreme weather events and recent warming, and (3) assess the potential for artificial coastal defense structures to function as habitat for S. alveolata. A semi-quantitative abundance scale (ACFOR) was used to compare broadscale, long-term and interannual abundance of S. alveolata near its range edge in NW Britain. S. alveolata disappeared from the North Wales and Wirral coastlines where it had been abundant prior to the cold winter of 1962/1963. Population declines were also observed following the recent cold winters of 2009/2010 and 2010/2011. Extensive surveys in 2004 and 2012 revealed that S. alveolata had recolonized locations from which it had previously disappeared. Furthermore, it had increased in abundance at many locations, possibly in response to recent warming. S. alveolata was recorded on the majority of artificial coastal defense structures surveyed, suggesting that the proliferation of artificial coastal defense structures along this stretch of coastline may have enabled S. alveolata to spread across stretches of unsuitable natural habitat. Long-term and broadscale contextual monitoring is essential for monitoring responses of organisms to climate change. Historical data and gray literature can be invaluable sources of information. Our results support the theory that Lusitanian species are responding positively to climate warming but also that short-term extreme weather events can have potentially devastating widespread and lasting effects on organisms. Furthermore, the proliferation of coastal defense structures has implications for phylogeography, population genetics, and connectivity of coastal populations.
Resumo:
Biogenic reefs are important for habitat provision and coastal protection. Long-term datasets on the distribution and abundance of Sabellaria alveolata (L.) are available from Britain. The aim of this study was to combine historical records and contemporary data to (1) describe spatiotemporal variation in winter temperatures, (2) document short-term and long-term changes in the distribution and abundance of S. alveolata and discuss these changes in relation to extreme weather events and recent warming, and (3) assess the potential for artificial coastal defense structures to function as habitat for S. alveolata. A semi-quantitative abundance scale (ACFOR) was used to compare broadscale, long-term and interannual abundance of S. alveolata near its range edge in NW Britain. S. alveolata disappeared from the North Wales and Wirral coastlines where it had been abundant prior to the cold winter of 1962/1963. Population declines were also observed following the recent cold winters of 2009/2010 and 2010/2011. Extensive surveys in 2004 and 2012 revealed that S. alveolata had recolonized locations from which it had previously disappeared. Furthermore, it had increased in abundance at many locations, possibly in response to recent warming. S. alveolata was recorded on the majority of artificial coastal defense structures surveyed, suggesting that the proliferation of artificial coastal defense structures along this stretch of coastline may have enabled S. alveolata to spread across stretches of unsuitable natural habitat. Long-term and broadscale contextual monitoring is essential for monitoring responses of organisms to climate change. Historical data and gray literature can be invaluable sources of information. Our results support the theory that Lusitanian species are responding positively to climate warming but also that short-term extreme weather events can have potentially devastating widespread and lasting effects on organisms. Furthermore, the proliferation of coastal defense structures has implications for phylogeography, population genetics, and connectivity of coastal populations.