158 resultados para Ballads, English


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic climate change is exerting pressures on coastal ecosystems through increases in temperature, precipitation and ocean acidification. Phytoplankton community structure and photo-physiology are therefore adapting to these conditions. Changes in phytoplankton biomass and photosynthesis in relation to temperature and nutrient concentrations were assessed using a 14 year dataset from a coastal station in the Western English Channel (WEC). Dinoflagellate and coccolithophorid biomass exhibited a positive correlation with temperature, reaching the highest biomass at between 15 and 17°C. Diatoms showed a negative correlation with temperature, with highest biomass at 10°C. Chlorophyll a (chl a) normalised light-saturated photosynthetic rates (PBm) exhibited a hyperbolic response to increasing temperature, with an initial linear increase from 8 to 11°C, and reaching a plateau from 12°C. There was however no significant positive correlation between nutrients and phytoplankton biomass or PBm, which reflects the lag time between nutrient input and phytoplankton growth at this coastal site. The major phytoplankton groups that occurred at this site occupied distinct thermal niches, which in turn modified PBm. Increasing temperature, and higher water column stratification, was major factors in the initiation of dinoflagellates blooms at this site. Dinoflagellates blooms during summer also co-varied with silicate concentration, and acted as a tracer of dissolved inorganic nitrogen and phosphate from river run-off, which were subsequently reduced during these blooms. The data implies that increasing temperature and high river runoff during summer, will promote dinoflaglellates blooms in the WEC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The abundance of ammonia-oxidising bacterial (AOB) and ammonia-oxidising archaeal (AOA) (amoA) genes and ammonia oxidation rates were compared bimonthly from July 2008 to May 2011 in 4 contrasting coastal sediments in the western English Channel. Despite a higher abundance of AOA amoA genes within all sediments and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Sediment type was a major factor in determining both AOB amoA gene abundance and AOB community structure, possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation. Decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. PCR-DGGE of AOB amoA genes indicated that no seasonal changes to community composition occurred; however, a gradual movement in community composition occurred at 3 of the sites studied. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rates, or any other environmental variable measured, may be related to the higher spatial variation amongst measurements, obscuring temporal trends, or the bimonthly sampling, which may have been too infrequent to capture temporal variability in the deposition of fresh organic matter. Alternatively, AOA may respond to changing substrate concentrations by an increase or decrease in transcript rather than gene abundance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estuarine clams Scrobicularia plana were sampled from 108 intertidal locations around the English Channel and adjacent areas. Although S. plana is believed to be a strict gonochorist, 58% of the populations sampled included intersexed individuals (described as male clams exhibiting ovotestis). Over the entire region, on average, 8.6% of male clams exhibited intersex, although proportions of affected males ranged from 0% to 53% depending on location. The severity of intersex was assessed using a simple classification scale, with the majority of individuals showing low levels of impact. Sex ratios were significantly skewed at some sites. There were no significant relationships between the incidence and severity of intersex; or of associations with size or parasitism of individual clams. Intersex in S. plana is a useful tool to assess endocrine disruptive effects in estuaries, although mechanisms of impact and causative agents remain uncertain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following recognition of effects in the 1980s, tributyltin (TBT) has been monitored at sites in the English Channel to evaluate the prognosis for biota – spanning the introduction of restrictions on TBT use on small boats and the recent phase-out on the global fleet. We describe how persistence and impact of TBT in clams Scrobicularia plana has changed during this period in Southampton Water and Poole Harbour. TBT contamination (and loss) in water, sediment and clams reflects the abundance and type of vessel activity: half-times in sediment (up to 8y in Poole, 33y in Southampton) are longest near commercial shipping. Recovery of clam populations – slowest in TBT-contaminated deposits – provides a useful biological measure of legislative efficacy in estuaries. On rocky shores, recovery from imposex in Nucella lapillus is evident at many sites but, near ports, is prolonged by shipping impacts, including sediment legacy, for example, in the Fal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nano- and picoplankton community at Station L4 in the Western English Channel was studied between 2007 and 2013 by flow cytometry to quantify abundance and investigate seasonal cycles within these communities. Nanoplankton included both photosynthetic and heterotrophic eukaryotic single-celled organisms while the picoplankton included picoeukaryote phytoplankton, Synechococcus sp. cyanobacteria and heterotrophic bacteria. A Box–Jenkins Transfer Function climatology analysis of surface data revealed that Synechococcus sp., cryptophytes, and heterotrophic flagellates had bimodal annual cycles. Nanoeukaryotes and both high and low nucleic acid-containing bacteria (HNA and LNA, respectively) groups exhibited unimodal annual cycles. Phaeocystis sp., whilst having clearly defined abundance maxima in spring was not detectable the rest of the year. Coccolithophores exhibited a weak seasonal cycle, with abundance peaks in spring and autumn. Picoeukaryotes did not exhibit a discernable seasonal cycle at the surface. Timings of maximum group abundance varied through the year. Phaeocystis sp. and heterotrophic flagellates peaked in April/May. Nanoeukaryotes and HNA bacteria peaked in June/July and had relatively high abundance throughout the summer. Synechococcus sp., cryptophytes and LNA bacteria all peaked from mid to late September. The transfer function model techniques used represent a useful means of identifying repeating annual cycles in time series data with the added ability to detect trends and harmonic terms at different time scales from months to decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring red tides and harmful algal blooms (HABs) are of increasing importance in the coastal environment and can have dramatic effects on coastal benthic and epipelagic communities worldwide. Such blooms are often unpredictable, irregular or of short duration, and thus determining the underlying driving factors is problematic. The dinoflagellate Karenia mikimotoi is an HAB, commonly found in the western English Channel and thought to be responsible for occasional mass finfish and benthic mortalities. We analysed a 19-year coastal time series of phytoplankton biomass to examine the seasonality and interannual variability of K. mikimotoi in the western English Channel and determine both the primary environmental drivers of these blooms as well as the effects on phytoplankton productivity and oxygen conditions. We observed high variability in timing and magnitude of K. mikimotoi blooms, with abundances reaching >1000 cells mL�1 at 10 m depth, inducing up to a 12-fold increase in the phytoplankton carbon content of the water column. No long-term trends in the timing or magnitude of K. mikimotoi abundance were evident from the data. Key driving factors were identified as persistent summertime rainfall and the resultant input of low-salinity high-nutrient river water. The largest bloom in 2009 was associated with highest annual primary production and led to considerable oxygen depletion at depth, most likely as a result of enhanced biological breakdown of bloom material; however, this oxygen depletion may not affect zooplankton. Our data suggests that K. mikimotoi blooms are not only a key and consistent feature of western English Channel productivity, but importantly can potentially be predicted from knowledge of rainfall or river discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary productivity and subsequent carbon cycling in the coastal zone have a significant impact on the global carbon budget. It is currently unclear how anthropogenic activity could alter these budgets but long term coastal time series of hydrological, biogeochemical and biological measurements represent a key means to better understand past drivers, and hence to predicting future seasonal and inter-annual variability in carbon fixation in coastal ecosystems. An 8-year time series of primary production from 2003 to 2010, estimated using a recently developed absorption-based algorithm, was used to determine the nature and extent of change in primary production at a coastal station (L4) in the Western English Channel (WEC). Analysis of the seasonal and inter-annual variability in production demonstrated that on average, nano- and pico-phytoplankton account for 48% of the total carbon fixation and micro-phytoplankton for 52%. A recent decline in the primary production of nano- and pico-phytoplankton from 2005 to 2010 was observed, corresponding with a decrease in winter nutrient concentrations and a decrease in the biomass of Phaeocystis sp. Micro-phytoplankton primary production (PPM) remained relatively constant over the time series and was enhanced in summer during periods of high precipitation. Increases in sea surface temperature, and decreases in wind speeds and salinity were associated with later spring maxima in PPM. Together these trends indicate that predicted increases in temperature and decrease in wind speeds in future would drive later spring production whilst predicted increases in precipitation would also continue these blooms throughout the summer at this site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the early part of the 20th Century the impact of a range of anthropogenic activities in our coastal seas has steadily increased. The effect of such activities is a major cause for concern but in the benthic environment few studies exist that date back more than a few decades. Hence understanding long term changes is a challenge. Within this study we utilized a historic benthic dataset and resurveyed an area west of Eddystone reef in the English Channel previously investigated 112 years ago. The aim of the present work was to describe the current benthic community structure and investigate potential differences between 1895 and 2007. For each of the four major phyla investigated (Polychaeta, Crustacea, Mollusca and Echinodermata), multivariate community analysis showed significant differences between the historic and contemporary surveys. Echinoderm diversity showed a clear reduction between 1895 and 2007. The sea urchins Echinus esculentus, Spatangus purpureus, and Psammechinus miliaris and large star-fish Marthasterias glacialis showed reductions in abundance, in some cases being entirely absent from the survey area in 2007. Polychaetes showed a shift from tubiculous species to small errant and predatory species such as Glycera, Nephtys, and Lumbrineris spp. Within the group Mollusca large species such as Pecten maximus and Laevicardium crassum decreased in abundance while small species increased. Crustaceans in 1895 were dominated by crab species which were present in similar abundances in 2007, but, the order Amphipoda appeared to show a significant increase. While some of the differences observed could stem from differences in methodologies between the surveys, in particular increases of small cryptic species, the loss of large conspicuous species was judged to be genuine. The study area is an important beam trawling and scallop dredging ground; the differences observed are concomitant with changes generally associated with disturbance from demersal fishing activities such as these.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated long-term variability of the calycophoran siphonophores Muggiaea atlantica and Muggiaea kochi in the Western English Channel (WEC) between 1930 and 2011. Our aims were to describe long-term changes in abundance and temporal distribution in relation to local environmental dynamics. In order to better understand mechanisms that regulate the species’ populations, we identified periods that were characteristic of in situ population growth and the environmental optima associated with these events. Our results show that between 1930 and the 1960s both M. atlantica and M. kochi were transient components of the WEC ecosystem. In the late 1960s M. atlantica, successfully established a resident population in the WEC, while the occurrence of M. kochi became increasingly sporadic. Once established as a resident species, the seasonal abundance and distribution of M. atlantica increased. Analysis of environmental conditions associated with in situ population growth revealed that temperature and prey were key determinants of the seasonal distribution and abundance of M. atlantica. Salinity was shown to have an indirect effect, likely representing a proxy for water circulation in the WEC. Anomalies in the seasonal cycle of salinity, indicating deviation from the usual circulation pattern in the WEC, were negatively associated with in situ growth, suggesting dispersal of the locally developing M. atlantica population. However, our findings identified complexity in the relationship between characteristics of the environment and M. atlantica variability. The transition from a period of transiency (1930–1968) to residency (1969–2011) was tentatively attributed to structural changes in the WEC ecosystem that occurred under the forcing of wider-scale hydroclimatic changes.