29 resultados para spatio-temporal distribution
Resumo:
The North Sea cod (
Resumo:
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) represents an established method for the detection and diagnosis of breast lesions. While mass-like enhancing lesions can be easily categorized according to the Breast Imaging Reporting and Data System (BI-RADS) MRI lexicon, a majority of diagnostically challenging lesions, the so called non-mass-like enhancing lesions, remain both qualitatively as well as quantitatively difficult to analyze. Thus, the evaluation of kinetic and/or morphological characteristics of non-masses represents a challenging task for an automated analysis and is of crucial importance for advancing current computer-aided diagnosis (CAD) systems. Compared to the well-characterized mass-enhancing lesions, non-masses have no well-defined and blurred tumor borders and a kinetic behavior that is not easily generalizable and thus discriminative for malignant and benign non-masses. To overcome these difficulties and pave the way for novel CAD systems for non-masses, we will evaluate several kinetic and morphological descriptors separately and a novel technique, the Zernike velocity moments, to capture the joint spatio-temporal behavior of these lesions, and additionally consider the impact of non-rigid motion compensation on a correct diagnosis.
Resumo:
The abundance of ammonia-oxidising bacterial (AOB) and ammonia-oxidising archaeal (AOA) (amoA) genes and ammonia oxidation rates were compared bimonthly from July 2008 to May 2011 in 4 contrasting coastal sediments in the western English Channel. Despite a higher abundance of AOA amoA genes within all sediments and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Sediment type was a major factor in determining both AOB amoA gene abundance and AOB community structure, possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation. Decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. PCR-DGGE of AOB amoA genes indicated that no seasonal changes to community composition occurred; however, a gradual movement in community composition occurred at 3 of the sites studied. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rates, or any other environmental variable measured, may be related to the higher spatial variation amongst measurements, obscuring temporal trends, or the bimonthly sampling, which may have been too infrequent to capture temporal variability in the deposition of fresh organic matter. Alternatively, AOA may respond to changing substrate concentrations by an increase or decrease in transcript rather than gene abundance.
Resumo:
Ecosystems consist of complex dynamic interactions among species and the environment, the understanding of which has implications for predicting the environmental response to changes in climate and biodiversity. However, with the recent adoption of more explorative tools, like Bayesian networks, in predictive ecology, few assumptions can be made about the data and complex, spatially varying interactions can be recovered from collected field data. In this study, we compare Bayesian network modelling approaches accounting for latent effects to reveal species dynamics for 7 geographically and temporally varied areas within the North Sea. We also apply structure learning techniques to identify functional relationships such as prey–predator between trophic groups of species that vary across space and time. We examine if the use of a general hidden variable can reflect overall changes in the trophic dynamics of each spatial system and whether the inclusion of a specific hidden variable can model unmeasured group of species. The general hidden variable appears to capture changes in the variance of different groups of species biomass. Models that include both general and specific hidden variables resulted in identifying similarity with the underlying food web dynamics and modelling spatial unmeasured effect. We predict the biomass of the trophic groups and find that predictive accuracy varies with the models' features and across the different spatial areas thus proposing a model that allows for spatial autocorrelation and two hidden variables. Our proposed model was able to produce novel insights on this ecosystem's dynamics and ecological interactions mainly because we account for the heterogeneous nature of the driving factors within each area and their changes over time. Our findings demonstrate that accounting for additional sources of variation, by combining structure learning from data and experts' knowledge in the model architecture, has the potential for gaining deeper insights into the structure and stability of ecosystems. Finally, we were able to discover meaningful functional networks that were spatially and temporally differentiated with the particular mechanisms varying from trophic associations through interactions with climate and commercial fisheries.
Resumo:
Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential contribution to the Atlantic Meridional Overturning Circulation as well as the global circulation of heat and salt and hence global climate. Quantifying Agulhas leakage is challenging due to the non-linear nature of this process; current observations are insufficient to estimate its variability and ocean models all have biases in this region, even at high resolution . An Eulerian threshold integration method is developed to examine the mechanisms of Agulhas leakage variability in six ocean model simulations of varying resolution. This intercomparison, based on the circulation and thermo- haline structure at the Good Hope line, a transect to the south west of the southern tip of Africa, is used to identify features that are robust regardless of the model used and takes into account the thermohaline biases of each model. When determined by a passive tracer method, 60 % of the magnitude of Agulhas leakage is captured and more than 80 % of its temporal fluctuations, suggesting that the method is appropriate for investigating the variability of Agulhas leakage. In all simulations but one, the major driver of variability is associated with mesoscale features passing through the section. High resolution (<1/10 deg.) hindcast models agree on the temporal (2–4 cycles per year) and spatial (300–500 km) scales of these features corresponding to observed Agulhas Rings. Coarser resolution models (<1/4 deg.) reproduce similar time scale of variability of Agulhas leakage in spite of their difficulties in representing the Agulhas rings properties. A coarser resolution climate model (2 deg.) does not resolve the spatio-temporal mechanism of variability of Agulhas leakage. Hence it is expected to underestimate the contribution of Agulhas Current System to climate variability.
Resumo:
Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential contribution to the Atlantic Meridional Overturning Circulation as well as the global circulation of heat and salt and hence global climate. Quantifying Agulhas leakage is challenging due to the non-linear nature of this process; current observations are insufficient to estimate its variability and ocean models all have biases in this region, even at high resolution . An Eulerian threshold integration method is developed to examine the mechanisms of Agulhas leakage variability in six ocean model simulations of varying resolution. This intercomparison, based on the circulation and thermo- haline structure at the Good Hope line, a transect to the south west of the southern tip of Africa, is used to identify features that are robust regardless of the model used and takes into account the thermohaline biases of each model. When determined by a passive tracer method, 60 % of the magnitude of Agulhas leakage is captured and more than 80 % of its temporal fluctuations, suggesting that the method is appropriate for investigating the variability of Agulhas leakage. In all simulations but one, the major driver of variability is associated with mesoscale features passing through the section. High resolution (<1/10 deg.) hindcast models agree on the temporal (2–4 cycles per year) and spatial (300–500 km) scales of these features corresponding to observed Agulhas Rings. Coarser resolution models (<1/4 deg.) reproduce similar time scale of variability of Agulhas leakage in spite of their difficulties in representing the Agulhas rings properties. A coarser resolution climate model (2 deg.) does not resolve the spatio-temporal mechanism of variability of Agulhas leakage. Hence it is expected to underestimate the contribution of Agulhas Current System to climate variability.
Resumo:
The Continuous Plankton Recorder survey provides pan-oceanic data on geographic distribution, species composition, seasonal cycles of abundance, and long-term change during the last 70 years. In this paper we compare and contrast some of the historic data-analytic protocols of the survey, focusing primarily on the various means by which spatio-temporal information in CPR data has been exposed. Relative strengths and limitations are assessed, followed by suggestions for future approaches to the visualisation and summarising of CPR data.
Resumo:
We study the spatial and seasonal variability of phytoplankton biomass (as phytoplankton color) in relation to the environmental conditions in the North Sea using data from the Continuous Plankton Recorder survey. By using only environmental fields and location as predictor variables we developed a nonparametric model (generalized additive model) to empirically explore how key environmental factors modulate the spatio-temporal patterns of the seasonal cycle of algal biomass as well as how these relate to the ,1988 North Sea regime shift. Solar radiation, as manifest through changes of sea surface temperature (SST), was a key factor not only in the seasonal cycle but also as a driver of the shift. The pronounced increase in SST and in wind speed after the 1980s resulted in an extension of the season favorable for phytoplankton growth. Nutrients appeared to be unimportant as explanatory variables for the observed spatio-temporal pattern, implying that they were not generally limiting factors. Under the new climatic regime the carrying capacity of the whole system has been increased and the southern North Sea, where the environmental changes have been more pronounced, reached a new maximum.
Resumo:
The Continuous Plankton Recorder (CPR) survey provides a unique multi- decadal dataset on the abundance of plankton in the North Sea and North Atlantic and is one of only a few monitoring programmes operating at a large spatio- temporal scale. The results of all samples analysed from the survey since 1946 are stored on an Access Database at the Sir Alister Hardy Foundation for Ocean Science (SAHFOS) in Plymouth. The database is large, containing more than two million records (~80 million data points, if zero results are added) for more than 450 taxonomic entities. An open data policy is operated by SAHFOS. However, the data are not on-line and so access by scientists and others wishing to use the results is not interactive. Requests for data are dealt with by the Database Manager. To facilitate access to the data from the North Sea, which is an area of high research interest, a selected set of data for key phytoplankton and zooplankton species has been processed in a form that makes them readily available on CD for research and other applications. A set of MATLAB tools has been developed to provide an interpolated spatio-temporal description of plankton sampled by the CPR in the North Sea, as well as easy and fast access to users in the form of a browser. Using geostatistical techniques, plankton abundance values have been interpolated on a regular grid covering the North Sea. The grid is established on centres of 1 degree longitude x 0.5 degree latitude (~32 x 30 nautical miles). Based on a monthly temporal resolution over a fifty-year period (1948-1997), 600 distribution maps have been produced for 54 zooplankton species, and 480 distribution maps for 57 phytoplankton species over the shorter period 1958-1997. The gridded database has been developed in a user-friendly form and incorporates, as a package on a CD, a set of options for visualisation and interpretation, including the facility to plot maps for selected species by month, year, groups of months or years, long-term means or as time series and contour plots. This study constitutes the first application of an easily accessed and interactive gridded database of plankton abundance in the North Sea. As a further development the MATLAB browser is being converted to a user- friendly Windows-compatible format (WinCPR) for release on CD and via the Web in 2003.
Resumo:
Increasing availability and extent of biological ocean time series (from both in situ and satellite data) have helped reveal significant phenological variability of marine plankton. The extent to which the range of this variability is modified as a result of climate change is of obvious importance. Here we summarize recent research results on phenology of both phytoplankton and zooplankton. We suggest directions to better quantify and monitor future plankton phenology shifts, including (i) examining the main mode of expected future changes (ecological shifts in timing and spatial distribution to accommodate fixed environmental niches vs. evolutionary adaptation of timing controls to maintain fixed biogeography and seasonality), (ii) broader understanding of phenology at the species and community level (e.g. for zooplankton beyond Calanus and for phytoplankton beyond chlorophyll), (iii) improving and diversifying statistical metrics for indexing timing and trophic synchrony and (iv) improved consideration of spatio-temporal scales and the Lagrangian nature of plankton assemblages to separate time from space changes.