61 resultados para particulate nutrients


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the oceanic behavior of the lithogenic trace elements Al and Ti in the upper 200 m of the Atlantic Ocean. The distribution of both metals in the dissolved and particulate phases was assessed along an E-W transect in the eastern tropical North Atlantic (December 2009) and along a meridional Atlantic transect (April-May 2010). The surface water concentrations of particulate and dissolved Al and Ti reflected the previously observed pattern of atmospheric inputs into the Atlantic Ocean. Subsurface minima at stations with pronounced fluorescence maxima were observed, suggesting a link between biological productivity and the removal of both dissolved and particulate Al and Ti. This may include uptake mechanisms, adsorption and aggregation processes on biogenic particle surfaces and the formation of large, fast sinking biogenic particles, e.g., fecal pellets. Residence times in the upper water column (100 m) of the tropical and subtropical North Atlantic were estimated to range in the order of days to weeks in the particulate phases (Al: 3-22 days, Ti: 4-37 days) and were 0.9-3.8 years for Al and 10-31 years for Ti in the dissolved phases. Longer residence times in both phases in the South Atlantic are consistent with lower biological productivity and decreased removal rates. In the upper water column, Al was predominantly present in the dissolved form, whereas Ti mostly occurred in the particulate form. Largest deviations in the partition coefficients between the particulate and dissolved phases were found in the surface waters, together with excess dissolved Al over Ti compared to the crustal source. This likely reflects elevated dissolution of Al compared to Ti from atmospheric mineral particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Profiles of suspended particulate load and its organic and inorganic carbon contents as well as salinity, dissolved oxygen, ammonia and divalent manganese have been recorded throughout the mixing region of the Tamar Estuary,Southwest England, in late summer when there was pronounced net oxygen consumption. The results indicate that trapping of particulate organic detritus (of both riverine and marine origins) within the high turbidity zone contributes to the localisation and buffering of the seasonal oxygen demand exerted within the low salinity region of the estuary.