33 resultados para limit cycle
Resumo:
Geochemical evidence invokes anoxic deep oceans until the terminal Neoproterozoic similar to 0.55 Ma, despite oxygenation of Earth's atmosphere nearly 2 Gyr earlier. Marine sediments from the intervening period suggest predominantly ferruginous (anoxic Fe(II)-rich) waters, interspersed with euxinia (anoxic H2S-rich conditions) along productive continental margins. Today, sustained biotic H2S production requires NO3- depletion because denitrifiers outcompete sulphate reducers. Thus, euxinia is rare, only occurring concurrently with (steady state) organic carbon availability when N-2-fixers dominate the production in the photic zone. Here we use a simple box model of a generic Proterozoic coastal upwelling zone to show how these feedbacks caused the mid-Proterozoic ocean to exhibit a spatial/temporal separation between two states: photic zone NO3- with denitrification in lower anoxic waters, and N-2-fixation- driven production overlying euxinia. Interchange between these states likely explains the varying H2S concentration implied by existing data, which persisted until the Neoproterozoic oxygenation event gave rise to modern marine biogeochemistry.
Relationships Between Seston Available Food And Feeding-Activity In The Common Mussel Mytilus-Edulis
Resumo:
The feeding and metabolic rates of Mytilus edulis L. of different body sizes were measured in response to changes in particle concentrations ranging from 2 to 350 mg l-1. Rates of oxygen consumption were not significantly affected by changes in seston concentration, whereas clearance rates gradually declined with increasing particle concentration. Pseudofaeces production was initiated at relatively low seston concentrations (<5 mg l-1). Marked seasonal changes were recorded in the composition of suspended particulates (seston) in an estuary in south-west England. Total seston was sampled at frequent intervals throughout an annual cycle and analysed in terms of: particle size-frequency distributions, total dry weight (mg l-1), inorganic content, chlorophyll a, carbohydrate, protein and lipid. The particulate carbohydrate, protein and lipid content provided an estimate of the food content of the seston. The results are discussed in terms of the “food available” to a nonselective suspension feeder, such as M. edulis, during a seasonal cycle. The effect of inorganic silt in suspension was mainly to limit by “dilution” the amount of food material ingested rather than to reduce the amount of material filtered by the mussel. In winter, the food content of the material ingested was 5%, and this increased to 25% during the spring and summer.