18 resultados para hard controls
Resumo:
Measurements of suspended particle matter (SPM) and turbulence have been obtained over five tidal surveys during spring and summer 2010 at station L4 (5025 degrees N 04.22 degrees W, depth 50 m), in the Western English Channel. The relationship between turbulence intensity and bed stress is explored, with an in-line holographic imaging system evaluating the extent to which material is resuspended. Image analysis allows for the identification of SPM above a size threshold of 200 pm, capturing particle variability across tidal cycles and the two seasons. Dissipation of turbulent kinetic energy, which exceeds 10(-5) W kg(-1), yields maximum values of bed stress of between 0.17 and 0.20 N m(-2), frequently resulting in the resuspension of material from the bed. Resuspension is shown to promote aggregation of SPM into flocs, where the size of such particles is theoretically determined by the Kolmogorov microscale, l(k). During the spring surveys, flocs of a size larger than lk were observed, though this was not repeated during summer. It is proposed that the presence of gelatinous, biological material in spring allows flocculated particles to exceed l(k). This suggests that under specific circumstances, the limiting factor on the growth of flocculated SPM is not only turbulence, as previously thought, but the presence or absence of certain types of biological particle.
Resumo:
In this paper we clearly demonstrate that changes in oceanic nutrients are a first order factor in determining changes in the primary production of the northwest European continental shelf on time scales of 5–10 yr. We present a series of coupled hydrodynamic ecosystem modelling simulations, using the POLCOMS-ERSEM system. These are forced by both reanalysis data and a single example of a coupled ocean-atmosphere general circulation model (OA-GCM) representative of possible conditions in 2080–2100 under an SRES A1B emissions scenario, along with the corresponding present day control. The OA-GCM forced simulations show a substantial reduction in surface nutrients in the open-ocean regions of the model domain, comparing future and present day time-slices. This arises from a large increase in oceanic stratification. Tracer transport experiments identify a substantial fraction of on-shelf water originates from the open-ocean region to the south of the domain, where this increase is largest, and indeed the on-shelf nutrient and primary production are reduced as this water is transported on-shelf. This relationship is confirmed quantitatively by comparing changes in winter nitrate with total annual nitrate uptake. The reduction in primary production by the reduced nutrient transport is mitigated by on-shelf processes relating to temperature, stratification (length of growing season) and recycling. Regions less exposed to ocean-shelf exchange in this model (Celtic Sea, Irish Sea, English Channel, and Southern North Sea) show a modest increase in primary production (of 5–10%) compared with a decrease of 0–20% in the outer shelf, Central and Northern North Sea. These findings are backed up by a boundary condition perturbation experiment and a simple mixing model.
Resumo:
Unprecedented basin-scale ecological changes are occurring in our seas. As temperature and carbon dioxide concentrations increase, the extent of sea ice is decreasing, stratification and nutrient regimes are changing, and pH is decreasing. These unparalleled changes present new challenges for managing our seas as we are only just beginning to understand the ecological manifestations of these climate alterations. The Marine Strategy Framework Directive requires all European Member States to achieve Good Environmental Status (GES) in their seas by 2020; this means management toward GES will take place against a background of climate-driven macroecological change. Each Member State must set environmental targets to achieve GES; however, in order to do so an understanding of large-scale ecological change in the marine ecosystem is necessary. Much of our knowledge of macroecological change in the North Atlantic is a result of research using data gathered by the Continuous Plankton Recorder (CPR) survey, a near-surface plankton monitoring program which has been sampling in the North Atlantic since 1931. CPR data indicate that North Atlantic and North Sea plankton dynamics are responding to both climate and human-induced changes, presenting challenges to the development of pelagic targets for achievement of GES in European seas. Thus the continuation of long-term ecological time-series such as the CPR is crucial for informing and supporting the sustainable management of European seas through policy mechanisms.