59 resultados para feeding in trays


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meroplankton are seasonally important contributors to the zooplankton, particularly at inshore sites, yet their feeding ecology is poorly known relative to holoplankton. While several studies have measured feeding in decapod larvae, few studies have examined the feeding rates of decapod larvae on natural prey assemblages throughout the reproductive season. We conducted 8 feeding experiments with Necora puber, Liocarcinus spp. and Upogebia spp. zoea larvae collected from the L4 monitoring site off Plymouth (50°15.00′N, 4°13.02′W) during spring–summer 2009 and 2010. This period spanned moderate-to-high food availability (0.5–1.6 µg chl-a L−1), but a great range in food composition with small cells <20 µm dominating in 2010. Daily rations averaged 17, 60 and 22 % of body C for the 3 respective decapod species. Clearance rates differed according to prey type, and all 3 decapod genera showed evidence of selection of dinoflagellates. Importantly, small cells including nano- and pico-plankton were ingested, this being demonstrated independently by flow cytometric analysis of the feeding experiments and molecular analysis. PCR-based analysis of the haptophyte portion of the diet revealed ingestion of Isochrysis galbana by decapod larvae in the bottle incubations and Isochrysis galbana and Phaeocystis globosa by decapod larvae collected directly from the field. This study has shown that pico- and nano-sized plankton form an important supplement to the diverse and variable diet of decapod larvae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microscopic plastic debris, termed “microplastics”, are of increasing environmental concern. Recent studies have demonstrated that a range of zooplankton, including copepods, can ingest microplastics. Copepods are a globally abundant class of zooplankton that form a key trophic link between primary producers and higher trophic marine organisms. Here we demonstrate that ingestion of microplastics can significantly alter the feeding capacity of the pelagic copepod Calanus helgolandicus. Exposed to 20 μm polystyrene beads (75 microplastics mL–1) and cultured algae ([250 μg C L–1) for 24 h, C. helgolandicus ingested 11% fewer algal cells (P = 0.33) and 40% less carbon biomass (P < 0.01). There was a net downward shift in the mean size of algal prey consumed (P < 0.001), with a 3.6 fold increase in ingestion rate for the smallest size class of algal prey (11.6–12.6 μm), suggestive of postcapture or postingestion rejection. Prolonged exposure to polystyrene microplastics significantly decreased reproductive output, but there were no significant differences in egg production rates, respiration or survival. We constructed a conceptual energetic (carbon) budget showing that microplastic-exposed copepods suffer energetic depletion over time. We conclude that microplastics impede feeding in copepods, which over time could lead to sustained reductions in ingested carbon biomass.