18 resultados para community OR
Resumo:
Exploring climate and anthropogenic impacts on marine ecosystems requires an understanding of how trophic components interact. However, integrative end-to-end ecosystem studies (experimental and/or modelling) are rare. Experimental investigations often concentrate on a particular group or individual species within a trophic level, while tropho-dynamic field studies typically employ either a bottom-up approach concentrating on the phytoplankton community or a top-down approach concentrating on the fish community. Likewise the emphasis within modelling studies is usually placed upon phytoplankton-dominated biogeochemistry or on aspects of fisheries regulation. In consequence the roles of zooplankton communities (protists and metazoans) linking phytoplankton and fish communities are typically under-represented if not (especially in fisheries models) ignored. Where represented in ecosystem models, zooplankton are usually incorporated in an extremely simplistic fashion, using empirical descriptions merging various interacting physiological functions governing zooplankton growth and development, and thence ignoring physiological feedback mechanisms. Here we demonstrate, within a modelled plankton food-web system, how trophic dynamics are sensitive to small changes in parameter values describing zooplankton vital rates and thus the importance of using appropriate zooplankton descriptors. Through a comprehensive review, we reveal the mismatch between empirical understanding and modelling activities identifying important issues that warrant further experimental and modelling investigation. These include: food selectivity, kinetics of prey consumption and interactions with assimilation and growth, form of voided material, mortality rates at different age-stages relative to prior nutrient history. In particular there is a need for dynamic data series in which predator and prey of known nutrient history are studied interacting under varied pH and temperature regimes.
Resumo:
1.Methods of sensitivity assessment to identify species and habitats in need of management or protection have been available since the 1970s. 2.The approach to sensitivity assessment adopted by the Marine Life Information Network (MarLIN) assumes that the sensitivity of a community or biotope is dependent on the species within it. However, the application of this approach to sedimentary communities, especially offshore, is complex because of a lack of knowledge of the structural or functional role of many sedimentary species. 3.This paper describes a method to assess the overall sensitivity of sedimentary communities, based on the intolerance and recoverability of component species to physical disturbance. A range of methods were applied to identify the best combinations of abundant, dominant or high biomass species for the assessment of sensitivity in the sedimentary communities examined. 4.Results showed that reporting the most frequent species' sensitivity assessment, irrespective of the four methods used to select species, consistently underestimated the total sensitivity of the community. In contrast, reporting the most sensitive assessment from those species selected resulted in a range of biotope sensitivities from very low to very high, that was better able to discriminate between the sensitivities of the communities examined. 5.The assumptions behind the methodology, its limitations and potential application are discussed.
Resumo:
There has been much debate on the extent to which resource availability (bottom-up) versus predation pressure from fish (top-down) modulates the dynamics of plankton in marine systems. Physico/chemical bottom-up forcing has been considered to be the main mechanism structuring marine ecosystems, although some field observations and empirical correlations support top-down modulation. Models have indicated possible feedback loops to the plankton and other studies have interpreted a grazing impact from long-term changes in fish stocks. In freshwater systems, evidence for top-down forcing by fish and trophic cascading is well documented. First, evidence for equivalent top-down effects in the marine environment is presented, with an overview of relevant publications. In the second part, time series, averaged for the North Sea (when possible from 1948 to 1997), of fish catch, recruitment, and spawning stock biomass are related to the abundance of species or larger groupings of zooplankton and phytoplankton from the Continuous Plankton Recorder survey and selected environmental parameters. Preliminary analysis suggests that there is strong interaction between different fish species and the plankton and that the fishery, through top-down control, may at times be an important contributor to changes in the North Sea ecosystem.
Resumo:
Here we describe, the longest microbial time-series analyzed to date using high-resolution 16S rRNA tag pyrosequencing of samples taken monthly over 6 years at a temperate marine coastal site off Plymouth, UK. Data treatment effected the estimation of community richness over a 6-year period, whereby 8794 operational taxonomic units (OTUs) were identified using single-linkage preclustering and 21 130 OTUs were identified by denoising the data. The Alphaproteobacteria were the most abundant Class, and the most frequently recorded OTUs were members of the Rickettsiales (SAR 11) and Rhodobacteriales. This near-surface ocean bacterial community showed strong repeatable seasonal patterns, which were defined by winter peaks in diversity across all years. Environmental variables explained far more variation in seasonally predictable bacteria than did data on protists or metazoan biomass. Change in day length alone explains >65% of the variance in community diversity. The results suggested that seasonal changes in environmental variables are more important than trophic interactions. Interestingly, microbial association network analysis showed that correlations in abundance were stronger within bacterial taxa rather than between bacteria and eukaryotes, or between bacteria and environmental variables.
Resumo:
The impact of ocean acidification and carbonation on microbial community structure was assessed during a large-scale in situ costal pelagic mesocosm study, included as part of the EPOCA 2010 Arctic campaign. The mesocosm experiment included ambient conditions (fjord) and nine mesocosms with pCO(2) levels ranging from similar to 145 to similar to 1420 mu atm. Samples for the present study were collected at ten time points (t-1, t1, t5, t7, t12, t14, t18, t22, t26 to t28) in seven treatments (ambient fjord (similar to 145), 2x similar to 185, similar to 270, similar to 685, similar to 820, similar to 1050 mu atm) and were analysed for "small" and "large" size fraction microbial community composition using 16S rRNA (ribosomal ribonucleic acid) amplicon sequencing. This high-throughput sequencing analysis produced similar to 20 000 000 16S rRNA V4 reads, which comprised 7000OTUs. The main variables structuring these communities were sample origins (fjord or mesocosms) and the community size fraction (small or large size fraction). The community was significantly different between the unenclosed fjord water and enclosed mesocosms (both control and elevated CO2 treatments) after nutrients were added to the mesocosms, suggesting that the addition of nutrients is the primary driver of the change in mesocosm community structure. The relative importance of each structuring variable depended greatly on the time at which the community was sampled in relation to the phytoplankton bloom. The sampling strategy of separating the small and large size fraction was the second most important factor for community structure. When the small and large size fraction bacteria were analysed separately at different time points, the only taxon pCO(2) was found to significantly affect were the Gammaproteobacteria after nutrient addition. Finally, pCO(2) treatment was found to be significantly correlated (non-linear) with 15 rare taxa, most of which increased in abundance with higher CO2.
Resumo:
Effects of ocean acidification on the composition of the active bacterial and archaeal community within Arctic surface sediment was analysed in detail using 16S rRNA 454 pyrosequencing. Intact sediment cores were collected and exposed to one of five different pCO(2) concentrations [380 (present day), 540, 750, 1120 and 3000 atm] and RNA extracted after a period of 14 days exposure. Measurements of diversity and multivariate similarity indicated very little difference between pCO(2) treatments. Only when the highest and lowest pCO(2) treatments were compared were significant differences evident, namely increases in the abundance of operational taxonomic units most closely related to the Halobacteria and differences to the presence/absence structure of the Planctomycetes. The relative abundance of members of the classes Planctomycetacia and Nitrospira increased with increasing pCO(2) concentration, indicating that these groups may be able to take advantage of changing pH or pCO(2) conditions. The modest response of the active microbial communities associated with these sediments may be due to the low and fluctuating pore-water pH already experienced by sediment microbes, a result of the pH buffering capacity of marine sediments, or due to currently unknown factors. Further research is required to fully understand the impact of elevated CO2 on sediment physicochemical parameters, biogeochemistry and microbial community dynamics.
Resumo:
Four time-series of copepod species biomass in the north of Spain were contrasted to demonstrate spatial autocorrelation of local communities and their responses to short-term local and regional variability in oceanographic conditions. The series represented coastal and oceanic environments along a marked gradient of influence of seasonal upwelling from Galicia to the Mar Cantábrico (S Bay of Biscay), and each one included at least 10 years of continuous data collected at monthly frequency. Community composition (i.e. species number and diversity) was very consistent through the region, but local variations in the presence of new species and the relative proportions of common species allowed for the characterisation of the response to the environment at each site. Small-sized species were more frequent near the coast. A few species, however, captured the main patterns of variability in all series. Calanus helgolandicus and Acartia (mainly Acartia clausi) were generally the main contributors to total biomass, while other species as Paracalanus parvus and Clausocalanus spp. were important only at some locations. Most copepod indices were positively correlated with upwelling, either considering the whole community (biomass, species richness and diversity) or individual species, but only in the coastal series analysed since 1991. Copepods in the nearby ocean, however, showed negative correlations with upwelling in the period 1960–1986. The effects of upwelling may have been modulated by local factors, as showed by the increases in biomass, number of species and diversity in associations with increases in sea surface temperature in Galicia, while in the Mar Cantábrico only the warming-tolerant species increased and those typical of upwelling decreased. Density stratification of the water column was associated with decreases in total copepod biomass in Galicia, while it favoured the increase in species richness in the Mar Cantábrico. Nearly all significant responses of copepods to environmental variability were delayed by up to 5 months, showing the importance of considering time-lags in the analysis of temporal responses of zooplankton.
Resumo:
Phytoplankton phenology and community structure in the western North Pacific were investigated for 2001–2009, based on satellite ocean colour data and the Continuous Plankton Recorder survey. We estimated the timing of the spring bloom based on the cumulative sum satellite chlorophyll adata, and found that the Pacific Decadal Oscillation (PDO)-related interannual SST anomaly in spring significantly affected phytoplankton phenology. The bloom occurred either later or earlier in years of positive or negative PDO (indicating cold and warm conditions, respectively). Phytoplankton composition in the early summer varied depending on the magnitude of seasonal SST increases, rather than the SST value itself. Interannual variations in diatom abundance and the relative abundance of non-diatoms were positively correlated with SST increases for March–April and May–July, respectively, suggesting that mixed layer environmental factors, such as light availability and nutrient stoichiometry, determine shifts in phytoplankton community structure. Our study emphasised the importance of the interannual variation in climate-induced warm–cool cycles as one of the key mechanisms linking climatic forcing and lower trophic level ecosystems.
Resumo:
The North Atlantic Oscillation (NAO) is a major mode of variability in the North Atlantic, dominating atmospheric and oceanic conditions. Here, we examine the phytoplankton community-structure response to the NAO using the Continuous Plankton Recorder data set. In the Northeast Atlantic, in the transition region between the gyres, variability in the relative influence of subpolar or subtropical-like conditions is reflected in the physical environment. During positive NAO periods, the region experiences subpolar-like conditions, with strong wind stress and deep mixed layers. In contrast, during negative NAO periods, the region shifts toward more subtropical-like conditions. Diatoms dominate the phytoplankton community in positive NAO periods, whereas in negative NAO periods, dinoflagellates outcompete diatoms. The implications for interannual variability in deep ocean carbon flux are examined using data from the Porcupine Abyssal Plain time-series station. Contrary to expectations, carbon flux to 3000 m is enhanced when diatoms are outcompeted by other phytoplankton functional types. Additionally, highest carbon fluxes were not associated with an increase in biomineral content, which implies that ballasting is not playing a dominant role in controlling the flux of material to the deep ocean in this region. In transition zones between gyre systems, phytoplankton populations can change in response to forcing induced by opposing NAO phases.
Resumo:
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programs. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulfide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta-analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.
Resumo:
To restore lateral connectivity in highly regulated river-floodplain systems, it has become necessary to implement localized, "managed" connection flows, made possible using floodplain irrigation infrastructure. These managed flows contrast with "natural", large-scale, overbank flood pulses. We compared the effects of a managed and a natural connection event on (i) the composition of the large-bodied fish community and (ii) the structure of an endangered catfish population of a large floodplain lake. The change in community composition following the managed connection was not greater than that exhibited between seasons or years during disconnection. By contrast, the change in fish community structure following the natural connection was much larger than that attributed to background, within-and between-year variability during disconnection. Catfish population structure only changed significantly following the natural flood. While the natural flood increased various population rates of native fishes, it also increased those of non-native carp, a pest species. To have a positive influence on native biodiversity, environmental flows may need to be delivered to floodplains in a way that simulates the properties of natural flood pulses. A challenge, however, will be managing river-floodplain connectivity to benefit native more than non-native species.
Resumo:
Anthropogenic climate change is exerting pressures on coastal ecosystems through increases in temperature, precipitation and ocean acidification. Phytoplankton community structure and photo-physiology are therefore adapting to these conditions. Changes in phytoplankton biomass and photosynthesis in relation to temperature and nutrient concentrations were assessed using a 14 year dataset from a coastal station in the Western English Channel (WEC). Dinoflagellate and coccolithophorid biomass exhibited a positive correlation with temperature, reaching the highest biomass at between 15 and 17°C. Diatoms showed a negative correlation with temperature, with highest biomass at 10°C. Chlorophyll a (chl a) normalised light-saturated photosynthetic rates (PBm) exhibited a hyperbolic response to increasing temperature, with an initial linear increase from 8 to 11°C, and reaching a plateau from 12°C. There was however no significant positive correlation between nutrients and phytoplankton biomass or PBm, which reflects the lag time between nutrient input and phytoplankton growth at this coastal site. The major phytoplankton groups that occurred at this site occupied distinct thermal niches, which in turn modified PBm. Increasing temperature, and higher water column stratification, was major factors in the initiation of dinoflagellates blooms at this site. Dinoflagellates blooms during summer also co-varied with silicate concentration, and acted as a tracer of dissolved inorganic nitrogen and phosphate from river run-off, which were subsequently reduced during these blooms. The data implies that increasing temperature and high river runoff during summer, will promote dinoflaglellates blooms in the WEC.
Resumo:
There is ongoing debate as to whether the oligotrophic ocean is predominantly net autotrophic and acts as a CO2 sink, or net heterotrophic and therefore acts as a CO2 source to the atmosphere. This quantification is challenging, both spatially and temporally, due to the sparseness of measurements. There has been a concerted effort to derive accurate estimates of phytoplankton photosynthesis and primary production from satellite data to fill these gaps; however there have been few satellite estimates of net community production (NCP). In this paper, we compare a number of empirical approaches to estimate NCP from satellite data with in vitro measurements of changes in dissolved O2 concentration at 295 stations in the N and S Atlantic Ocean (including the Antarctic), Greenland and Mediterranean Seas. Algorithms based on power laws between NCP and particulate organic carbon production (POC) derived from 14C uptake tend to overestimate NCP at negative values and underestimate at positive values. An algorithm that includes sea surface temperature (SST) in the power function of NCP and 14C POC has the lowest bias and root-mean square error compared with in vitro measured NCP and is the most accurate algorithm for the Atlantic Ocean. Nearly a 13 year time series of NCP was generated using this algorithm with SeaWiFS data to assess changes over time in different regions and in relation to climate variability. The North Atlantic subtropical and tropical Gyres (NATL) were predominantly net autotrophic from 1998 to 2010 except for boreal autumn/winter, suggesting that the northern hemisphere has remained a net sink for CO2 during this period. The South Atlantic subtropical Gyre (SATL) fluctuated from being net autotrophic in austral spring-summer, to net heterotrophic in austral autumn–winter. Recent decadal trends suggest that the SATL is becoming more of a CO2 source. Over the Atlantic basin, the percentage of satellite pixels with negative NCP was 27%, with the largest contributions from the NATL and SATL during boreal and austral autumn–winter, respectively. Variations in NCP in the northern and southern hemispheres were correlated with climate indices. Negative correlations between NCP and the multivariate ENSO index (MEI) occurred in the SATL, which explained up to 60% of the variability in NCP. Similarly there was a negative correlation between NCP and the North Atlantic Oscillation (NAO) in the Southern Sub-Tropical Convergence Zone (SSTC),which explained 90% of the variability. There were also positive correlations with NAO in the Canary Current Coastal Upwelling (CNRY) and Western Tropical Atlantic (WTRA)which explained 80% and 60% of the variability in each province, respectively. MEI and NAO seem to play a role in modifying phases of net autotrophy and heterotrophy in the Atlantic Ocean.
Resumo:
This study presents the first in-situ measurements of the chlorophyll a oxidation product, hydroxychlorophyll a as well as the chlorophyll a precursor, chlorophyll aP276 conducted over an annual cycle. Chlorophyll a oxidation products, such as hydroxychlorophyll a may be associated with the decline of algal populations and can act as an initial step in the degradation of chlorophyll a into products which can be found in the geochemical record, important for studying past climate change events. Here, hydroxychlorophyll a and chlorophyll aP276 were measured at the long-term monitoring station L4, Western Channel Observatory (UK, www.westernchannelobservatory.org) over an annual cycle (2012). Weekly measurements of phytoplankton species composition and abundance enabled detailed analysis of possible sources of hydroxychlorophyll a. Dinoflagellates, 2 diatom species, the prymnesiophyte Phaeocystis spp. and the coccolithophorid Emiliania huxleyi were all associated with hydroxychlorophyll a occurrence. However, during alternate peaks in abundance of the diatoms, no association with hydroxychlorophyll a occurred, indicating that the oxidation of chlorophyll a was dependant not only on species but also on additional factors such as the mode of mortality, growth limiting factor (i.e. nutrient concentration) or phenotypic plasticity. Surface sediment samples contained 10 times more hydroxychlorophyll a (relative to chlorophyll a) than pelagic particulate samples, indicating that more chlorophyll a oxidation occurred during sedimentation or at the sediment–water interface, than in the pelagic environment. In addition, chlorophyll aP276 correlated with chl-a concentration, thus supporting its assignment as a chl-a precursor.