29 resultados para adult animal
Resumo:
1. Abundant mid-trophic pelagic fish often play a central role in marine ecosystems, both as links between zooplankton and top predators and as important fishery targets. In the North Sea, the lesser sandeel occupies this position, being the main prey of many bird, mammal and fish predators and the target of a major industrial fishery. However, since 2003, sandeel landings have decreased by > 50%, and many sandeel-dependent seabirds experienced breeding failures in 2004. 2. Despite the major economic implications, current understanding of the regulation of key constituents of this ecosystem is poor. Sandeel abundance may be regulated 'bottom-up' by food abundance, often thought to be under climatic control, or 'top-down' by natural or fishery predation. We tested predictions from these two hypotheses by combining unique long-term data sets (1973–2003) on seabird breeding productivity from the Isle of May, SE Scotland, and plankton and fish larvae from the Continuous Plankton Recorder survey. We also tested whether seabird breeding productivity was more tightly linked to sandeel biomass or quality (size) of individual fish. 3. The biomass of larval sandeels increased two- to threefold over the study period and was positively associated with proxies of the abundance of their plankton prey. Breeding productivity of four seabirds bringing multiple prey items to their offspring was positively related to sandeel larval biomass with a 1-year lag, indicating dependence on 1-year-old fish, but in one species bringing individual fish it was strongly associated with the size of adult sandeels. 4. These links are consistent with bottom-up ecosystem regulation and, with evidence from previous studies, indicate how climate-driven changes in plankton communities can affect top predators and potentially human fisheries through the dynamics of key mid-trophic fish. However, the failing recruitment to adult sandeel stocks and the exceptionally low seabird breeding productivity in 2004 were not associated with low sandeel larval biomass in 2003, so other mechanisms (e.g. predation, lack of suitable food after metamorphosis) must have been important in this case. Understanding ecosystem regulation is extremely important for predicting the fate of keystone species, such as sandeels, and their predators.
Resumo:
This survey on calorimetry and thermodynamics of anoxibiosis applies classical and irreversible thermodynamics to interpret experimental, direct calorimetric results in order to elucidate the sequential activation of various biochemical pathways. First, the concept of direct and indirect calorimetry is expanded to incorporate the thermochemistry of aerobic and anoxic metabolism in living cells and organisms. Calorimetric studies done under normoxia as well as under physiological and environmental anoxia are presented and assessed in terms of ATP turnover rate. Present evidence suggests that unknown sources of energy in freshwater and marine invertebrates under long-term anoxia may be important. During physiological hypoxia, thermodynamically grossly inefficient pathways sustain high metabolic rates for brief periods. On the contrary, under long-term environmental anoxia, low steady-state heat dissipation is linked to the more efficient succinate, propionate, and acetate pathways. In the second part of this paper these relationships are discussed in the context of linear, irreversible thermodynamics. The calorimetric and biochemical trends during aerobic-anoxic transitions are consistent with thermodynamic optimum functions of catabolic pathways. The theory predicts a decrease of rate with an increase of thermodynamic efficiency; therefore maximum rate and maximum efficiency are mutually exclusive. Cellular changes of pH and adenylate phosphorylation potential are recognized as regulatory mechanisms in the energetic switching to propionate production. While enzyme kinetics provides one key for understanding metabolic regulation, our insight remains incomplete without a complementary thermodynamic analysis of kinetic control in energetically coupled pathways.