33 resultados para Part I


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Continuous Plankton Recorder (CPR) survey has collected data on basin- scale zooplankton abundance in the North Atlantic since the 1930s. These data have been used in many studies to elucidate seasonal patterns and long-term change in plankton populations, as well as more recently to validate ecosystem models. There has, however, been relatively little comparison of the data from the CPR with that from other samplers. In this study we compare zooplankton abundance estimated from the CPR in the northeast Atlantic with near-surface samples collected by a Longhurst-Hardy Plankton Recorder (LHPR) at Ocean Weather Station India (59 degree N, 19 degree W) between 1971 and 1975. Comparisons were made for six common copepods in the region: Acartia clausi, Calanus finmarchicus, Euchaeta norvegica, Metridia lucens, Oithona sp. and Pleuromamma robusta. Seasonal cycles based on CPR data were similar to those recorded by the LHPR. Differences in absolute abundances were apparent, however, with the CPR underestimating abundances by a factor of between 5 and 40, with the exception of A. clausi. Active avoidance by zooplankton is thought to be responsible. This avoidance is species specific, so that care must be taken describing communities, as the CPR emphasises those species that are preferentially caught, a problem common to many plankton samplers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the oceanic behavior of the lithogenic trace elements Al and Ti in the upper 200 m of the Atlantic Ocean. The distribution of both metals in the dissolved and particulate phases was assessed along an E-W transect in the eastern tropical North Atlantic (December 2009) and along a meridional Atlantic transect (April-May 2010). The surface water concentrations of particulate and dissolved Al and Ti reflected the previously observed pattern of atmospheric inputs into the Atlantic Ocean. Subsurface minima at stations with pronounced fluorescence maxima were observed, suggesting a link between biological productivity and the removal of both dissolved and particulate Al and Ti. This may include uptake mechanisms, adsorption and aggregation processes on biogenic particle surfaces and the formation of large, fast sinking biogenic particles, e.g., fecal pellets. Residence times in the upper water column (100 m) of the tropical and subtropical North Atlantic were estimated to range in the order of days to weeks in the particulate phases (Al: 3-22 days, Ti: 4-37 days) and were 0.9-3.8 years for Al and 10-31 years for Ti in the dissolved phases. Longer residence times in both phases in the South Atlantic are consistent with lower biological productivity and decreased removal rates. In the upper water column, Al was predominantly present in the dissolved form, whereas Ti mostly occurred in the particulate form. Largest deviations in the partition coefficients between the particulate and dissolved phases were found in the surface waters, together with excess dissolved Al over Ti compared to the crustal source. This likely reflects elevated dissolution of Al compared to Ti from atmospheric mineral particles.