84 resultados para Nutrient biogeochemistry


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Arctic Ocean is, on average, the shallowest of Earth’s oceans. Its vast continental shelf areas, which account for approximately half of the Arctic Ocean’s total area, are heavily influenced by the surrounding land masses through river run-off and coastal erosion. As a main area of deep water formation, the Arctic is one of the main «engines» of global ocean circulation, due to large freshwater inputs, it is also strongly stratified. The Arctic Ocean’s complex oceanographic configuration is tightly linked to the atmosphere, the land, and the cryosphere. The physical dynamics not only drive important climate and global circulation patterns, but also control biogeochemical cycles and ecosystem dynamics. Current changes in Arctic sea-ice thickness and distribution, air and water temperatures, and water column stability are resulting in measurable shifts in the properties and functioning of the ocean and its ecosystems. The Arctic Ocean is forecast to shift to a seasonally ice-free ocean resulting in changes to physical, chemical, and biological processes. These include the exchange of gases across the atmosphere-ocean interface, the wind-driven ciruclation and mixing regimes, light and nutrient availability for primary production, food web dynamics, and export of material to the deep ocean. In anticipation of these changes, extending our knowledge of the present Arctic oceanography and these complex changes has never been more urgent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean biogeochemistry (OBGC) models span a wide variety of complexities, including highly simplified nutrient-restoring schemes, nutrient–phytoplankton–zooplankton–detritus (NPZD) models that crudely represent the marine biota, models that represent a broader trophic structure by grouping organisms as plankton functional types (PFTs) based on their biogeochemical role (dynamic green ocean models) and ecosystem models that group organisms by ecological function and trait. OBGC models are now integral components of Earth system models (ESMs), but they compete for computing resources with higher resolution dynamical setups and with other components such as atmospheric chemistry and terrestrial vegetation schemes. As such, the choice of OBGC in ESMs needs to balance model complexity and realism alongside relative computing cost. Here we present an intercomparison of six OBGC models that were candidates for implementation within the next UK Earth system model (UKESM1). The models cover a large range of biological complexity (from 7 to 57 tracers) but all include representations of at least the nitrogen, carbon, alkalinity and oxygen cycles. Each OBGC model was coupled to the ocean general circulation model Nucleus for European Modelling of the Ocean (NEMO) and results from physically identical hindcast simulations were compared. Model skill was evaluated for biogeochemical metrics of global-scale bulk properties using conventional statistical techniques. The computing cost of each model was also measured in standardised tests run at two resource levels. No model is shown to consistently outperform all other models across all metrics. Nonetheless, the simpler models are broadly closer to observations across a number of fields and thus offer a high-efficiency option for ESMs that prioritise high-resolution climate dynamics. However, simpler models provide limited insight into more complex marine biogeochemical processes and ecosystem pathways, and a parallel approach of low-resolution climate dynamics and high-complexity biogeochemistry is desirable in order to provide additional insights into biogeochemistry–climate interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring of Phaeocystis since 1948 during the Continuous Plankton Recorder survey indicates that over the last 5.5 decades the distribution of its colonies in the North Atlantic Ocean was not restricted to neritic waters: occurrence was also recorded in the open Atlantic regions sampled, most frequently in the spring. Apparently, environmental conditions in open ocean waters, also those far oVshore, are suitable for complete lifecycle development of colonies (the only stage recorded in the survey). In the North Sea the frequency of occurrence was also highest in spring. Its southeastern part was the Phaeocystis abundance hotspot of the whole area covered by the survey. Frequency was especially high before the 1960s and after the 1980s, i.e., in the periods when anthropogenic nutrient enrichment was relatively low. Changes in eutrophication have obviously not been a major cause of long-term Phaeocystis variation in the southeastern North Sea, where total phytoplankton biomass was related signiWcantly to river discharge. Evidence is presented for the suggestion that Phaeocystis abundance in the southern North Sea is to a large extent determined by the amount of Atlantic Ocean water Xushed in through the Dover Strait. Since Phaeocystis plays a key role in element Xuxes relevant to climate the results presented here have implications for biogeochemical models of cycling of carbon and sulphur. Sea-to-air exchange of CO2 and dimethyl sulphide (DMS) has been calculated on the basis of measurements during single-year cruises. The considerable annual variation in phytoplankton and in its Phaeocystis component reported here does not warrant extrapolation of such figures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Continuous autoanalytical recordings of the axial distributions of dissolved nitrate, silicate and phosphate in the influent freshwater and saline waters of the Tamar Estuary, south-west England have been obtained. Short-term variability in the distributions was assessed by repetitive profiling at approximately 3-h intervals on a single day and seasonal comparisons were obtained from ten surveys carried out between June 1977 and August 1978. Whereas nitrate is always essentially conserved throughout the upper estuary, the silicate- and phosphate-salinity relationships consistently indicate a non-biological removal of these nutrients within the low (0–10%) salinity range. Attempts to quantify precisely the degree of removal and to correlate this with changes in environmental properties (pH, turbidity, chlorophyll fluorescence, salinity, freshwater composition) were mainly inconclusive due to short-term fluctuations in the riverine concentrations of silicate and phosphate advected into the reactive region and to the rapid changes in turbidity brought about by tidally-induced resuspension and deposition of bottom sediment.