90 resultados para Nutrient Cycling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within models, zooplankton grazing is typically defined as being dependent on total prey concentration, with feeding selectivity expressed only as a function of prey size. This behavior ignores taxonomic preferences shown by the preda- tors and the capacity of some zooplankton to actively select or reject individual prey items from mixtures. We carried out two model experiments comparing impacts of zooplankton displaying passive and active selection, which resulted in contrasting dynamics for the pelagic system. Passive selection by the grazer resulted in a top down control on the prey with a fast turn-over of nutrients. Active selection, on the other hand led to a bottom-up control, with slower nutrient turnover constraining primary production by changing the system toward export of particulate matter. Our results suggest that selective feeding behavior is an important trait, and should be considered alongside size and taxonomy when studying the role of zooplankton impact in the ecosystem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The rapid increase in renewable energy generation from wind has increased concerns about the impacts that wind arrays have on the marine environment and what these impacts mean for society. One method for identifying the impacts of offshore wind farms (OWFs) on human welfare is through the assessment and valuation of ecosystem services. Using an ecosystem services approach, this paper reviews the impacts of OWFs on the ecosystem services delivered by marine environments. During the construction phase, supporting services such as reduced energy capture and nutrient cycling are changed due to the introduction of hard substrate and the reduction in soft sediment habitat at turbine bases. This may lead to changes in all other ecosystem services, both negative and positive. Quantifying these changes, however, is a challenge partly due to data limitations and a lack of clear understanding of the impacts of OWFs on the marine ecosystems. Scientific effort needs to quantitatively explore the impacts of OWFs on ecosystem functionality and the gathering of data that enables the assessment of changes to ecosystem services. Data needed to better quantify and value the impacts of OWFs on ecosystem services are suggested. The development of methods which integrate socioeconomic valuation of ecosystem services into the evaluation of renewable energy devices compliments efforts in assessing the environmental impacts and should enable a holistic assessment of the impact of renewable energy production and greenhouse gas mitigation technologies on the U. K. carbon footprint.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Whilst the biological consequences of long-term, gradual changes in acidity associated with the oceanic uptake of atmospheric carbon dioxide (CO2) are increasingly studied, the potential effects of rapid acidification associated with a failure of sub-seabed carbon storage infrastructure have received less attention. This study investigates the effects of severe short-term (8 days) exposure to acidified seawater on infaunal mediation of ecosystem processes (bioirrigation and sediment particle redistribution) and functioning (nutrient concentrations). Following acidification, individuals of Amphiura filiformis exhibited emergent behaviour typical of a stress response, which resulted in altered bioturbation, but limited changes in nutrient cycling. Under acidified conditions, A. filiformis moved to shallower depths within the sediment and the variability in occupancy depth reduced considerably. This study indicated that rapid acidification events may not be lethal to benthic invertebrates, but may result in behavioural changes that could have longer-term implications for species survival, ecosystem structure and functioning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts. The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources. The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts. However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services. Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change. The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales. The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide). The DY021 cruise is the first of the 2015 Benthic SSB cruises to investigate the 4 main ‘representative’ sites in the Celtic Sea that will represent all the various sediment types found in the whole area, these being Mud, San, Sandy-Mud and Muddy-Sand. The cruise will also carry out complimentary sampling at the Pelagic SSB programme main site called CANDYFLOSS in the central Shelf area in order to better link the Benthic and Pelagic programmes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shelf seas comprise approximately 7% of the world’s oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometrescale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shelf seas comprise approximately 7% of the world’s oceans and host enormous economic activity. Development of energy installations (e.g. Offshore Wind Farms (OWFs), tidal turbines) in response to increased demand for renewable energy requires a careful analysis of potential impacts. Recent remote sensing observations have identified kilometrescale impacts from OWFs. Existing modelling evaluating monopile impacts has fallen into two camps: small-scale models with individually resolved turbines looking at local effects; and large-scale analyses but with sub-grid scale turbine parameterisations. This work straddles both scales through a 3D unstructured grid model (FVCOM): wind turbine monopiles in the eastern Irish Sea are explicitly described in the grid whilst the overall grid domain covers the south-western UK shelf. Localised regions of decreased velocity extend up to 250 times the monopile diameter away from the monopile. Shelf-wide, the amplitude of the M2 tidal constituent increases by up to 7%. The turbines enhance localised vertical mixing which decreases seasonal stratification. The spatial extent of this extends well beyond the turbines into the surrounding seas. With significant expansion of OWFs on continental shelves, this work highlights the importance of how OWFs may impact coastal (e.g. increased flooding risk) and offshore (e.g. stratification and nutrient cycling) areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomineralization by marine phytoplankton, such as the silicifying diatoms and calcifying coccolithophores, plays an important role in carbon and nutrient cycling in the oceans. Silicification and calcification are distinct cellular processes with no known common mechanisms. It is thought that coccolithophores are able to outcompete diatoms in Si-depleted waters, which can contribute to the formation of coccolithophore blooms. Here we show that an expanded family of diatom-like silicon transporters (SITs) are present in both silicifying and calcifying haptophyte phytoplankton, including some globally important coccolithophores. Si is required for calcification in these coccolithophores, indicating that Si uptake contributes to the very different forms of biomineralization in diatoms and coccolithophores. Significantly, SITs and the requirement for Si are absent from highly abundant bloom-forming coccolithophores, such as Emiliania huxleyi. These very different requirements for Si in coccolithophores are likely to have major influence on their competitive interactions with diatoms and other siliceous phytoplankton.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biomineralization by marine phytoplankton, such as the silicifying diatoms and calcifying coccolithophores, plays an important role in carbon and nutrient cycling in the oceans. Silicification and calcification are distinct cellular processes with no known common mechanisms. It is thought that coccolithophores are able to outcompete diatoms in Si-depleted waters, which can contribute to the formation of coccolithophore blooms. Here we show that an expanded family of diatom-like silicon transporters (SITs) are present in both silicifying and calcifying haptophyte phytoplankton, including some globally important coccolithophores. Si is required for calcification in these coccolithophores, indicating that Si uptake contributes to the very different forms of biomineralization in diatoms and coccolithophores. Significantly, SITs and the requirement for Si are absent from highly abundant bloom-forming coccolithophores, such as Emiliania huxleyi. These very different requirements for Si in coccolithophores are likely to have major influence on their competitive interactions with diatoms and other siliceous phytoplankton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biogeochemical cycle of zinc (Zn) in the South Atlantic, at 40°S, was investigated as part of the UK GEOTRACES program. To date there is little understanding of the supply of Zn, an essential requirement for phytoplankton growth, to this highly productive region. Vertical Zn profiles displayed nutrient-like distributions with distinct gradients associated with the watermasses present. Surface Zn concentrations are among the lowest reported for theworld’s oceans (<50 pM). A strong Zn-Si linear relationshipwas observed (Zn (nM)= 0.065 Si (μM), r2=0.97, n = 460). Our results suggest that the use of a global Zn-Si relationship would lead to an underestimation of dissolved Zn in deeper waters of the South Atlantic. By utilizing Si* and a new tracer Zn* our data indicate that the preferential removal of Zn in the Southern Ocean prevented a direct return path for dissolved Zn to the surface waters of the South Atlantic at 40°S and potentially the thermocline waters of the South Atlantic subtropical gyre. The importance of Zn for phytoplankton growth was evaluated using the Zn-soluble reactive phosphorus (SRP) relationship. We hypothesize that the low Zn concentrations in the South Atlantic may select for phytoplankton cells with a lower Zn requirement. In addition, a much deeper kink at ~ 500m in the Zn:SRP ratio was observed compared to other oceanic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring of Phaeocystis since 1948 during the Continuous Plankton Recorder survey indicates that over the last 5.5 decades the distribution of its colonies in the North Atlantic Ocean was not restricted to neritic waters: occurrence was also recorded in the open Atlantic regions sampled, most frequently in the spring. Apparently, environmental conditions in open ocean waters, also those far oVshore, are suitable for complete lifecycle development of colonies (the only stage recorded in the survey). In the North Sea the frequency of occurrence was also highest in spring. Its southeastern part was the Phaeocystis abundance hotspot of the whole area covered by the survey. Frequency was especially high before the 1960s and after the 1980s, i.e., in the periods when anthropogenic nutrient enrichment was relatively low. Changes in eutrophication have obviously not been a major cause of long-term Phaeocystis variation in the southeastern North Sea, where total phytoplankton biomass was related signiWcantly to river discharge. Evidence is presented for the suggestion that Phaeocystis abundance in the southern North Sea is to a large extent determined by the amount of Atlantic Ocean water Xushed in through the Dover Strait. Since Phaeocystis plays a key role in element Xuxes relevant to climate the results presented here have implications for biogeochemical models of cycling of carbon and sulphur. Sea-to-air exchange of CO2 and dimethyl sulphide (DMS) has been calculated on the basis of measurements during single-year cruises. The considerable annual variation in phytoplankton and in its Phaeocystis component reported here does not warrant extrapolation of such figures.