48 resultados para ECOSYSTEM MODEL
Resumo:
This paper details updates to the Met Office's operational coupled hydrodynamic-ecosystem model from the 7 km Medium-Resolution Continental Shelf – POLCOMS-ERSEM (MRCS-PE) system (Siddorn et al., 2007) to the 7 km Atlantic Margin Model NEMO-ERSEM (AMM7-NE) system. We also provide a validation of the ecosystem component of the new operational system. Comparisons have been made between the model variables and available in situ, satellite and climatological data. The AMM7-NE system has also been benchmarked against the MRCS-PE system. The transition to the new AMM7-NE system was successful and it has been running operationally since March 2012 and has been providing products through MyOcean (http://www.myocean.eu.org) since that time. The results presented herein show the AMM7-NE system performs better than the MRCS-PE system with the most improvement in the model nutrient fields. The problem of nutrient accumulation in the MRCS-PE system appears to be solved in the new AMM7-NE system with nutrient fields improved throughout the domain as discussed in Sect. 4. Improvements in model chlorophyll are also seen but are more modest.
Resumo:
Ecosystem models are often assessed using quantitative metrics of absolute ecosystem state, but these model-data comparisons are disproportionately vulnerable to discrepancies in the location of important circulation features. An alternative method is to demonstrate the models capacity to represent ecosystem function; the emergence of a coherent natural relationship in a simulation indicates that the model may have an appropriate representation of the ecosystem functions that lead to the emergent relationship. Furthermore, as emergent properties are large-scale properties of the system, model validation with emergent properties is possible even when there is very little or no appropriate data for the region under study, or when the hydrodynamic component of the model differs significantly from that observed in nature at the same location and time. A selection of published meta-analyses are used to establish the validity of a complex marine ecosystem model and to demonstrate the power of validation with emergent properties. These relationships include the phytoplankton community structure, the ratio of carbon to chlorophyll in phytoplankton and particulate organic matter, the ratio of particulate organic carbon to particulate organic nitrogen and the stoichiometric balance of the ecosystem. These metrics can also inform aspects of the marine ecosystem model not available from traditional quantitative and qualitative methods. For instance, these emergent properties can be used to validate the design decisions of the model, such as the range of phytoplankton functional types and their behaviour, the stoichiometric flexibility with regards to each nutrient, and the choice of fixed or variable carbon to nitrogen ratios.
Resumo:
The Red Sea exhibits complex hydrodynamic and biogeochemical dynamics, which vary both in time and space. These dynamics have been explored through the development and application of a 3-D ecosystem model. The simulation system comprises two off-line coupled submodels: the MIT General Circulation Model (MITgcm) and the European Regional Seas Ecosystem Model (ERSEM), both adapted for the Red Sea. The results from an annual simulation under climatological forcing are presented. Simulation results are in good agreement with satellite and in situ data illustrating the role of the physical processes in determining the evolution and variability of the Red Sea ecosystem. The model was able to reproduce the main features of the Red Sea ecosystem functioning, including the exchange with the Gulf of Aden, which is a major driving mechanism for the whole Red Sea ecosystem and the winter overturning taking place in the north. Some model limitations, mainly related to the dynamics of the extended reef system located in the southern part of the Red Sea, which is not currently represented in the model, still need to be addressed.
Resumo:
The ERSEM model is one of the most established ecosystem models for the lower trophic levels of the marine food-web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North-Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic part of the marine ecosystem, including the microbial food-web, the carbonate system and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case-studies of mesocosm type simulations, water column implementations and a brief example of a full-scale application for the North-West European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.
Resumo:
The European Regional Seas Ecosystem Model (ERSEM) is one of the most established ecosystem models for the lower trophic levels of the marine food web in the scientific literature. Since its original development in the early nineties it has evolved significantly from a coastal ecosystem model for the North Sea to a generic tool for ecosystem simulations from shelf seas to the global ocean. The current model release contains all essential elements for the pelagic and benthic parts of the marine ecosystem, including the microbial food web, the carbonate system, and calcification. Its distribution is accompanied by a testing framework enabling the analysis of individual parts of the model. Here we provide a detailed mathematical description of all ERSEM components along with case studies of mesocosm-type simulations, water column implementations, and a brief example of a full-scale application for the north-western European shelf. Validation against in situ data demonstrates the capability of the model to represent the marine ecosystem in contrasting environments.