28 resultados para Distal Site
Resumo:
This report provides an overview of water and sediment quality within the Essex Estuaries European Marine Site (EMS) and examines evidence for their influence on biological condition. Site characterisation has been accomplished by review of published literature and unpublished reports, together with interrogation of summary data sets for tidal waters provided by EA.
Resumo:
The vent mussel Bathymodiolus puteoserpentis, a large vesicomyid clam and a smaller thyasirid were collected from an area of sediment subject to diffuse hydrothermal flow. The mussels live on the surface, the vesicomyids are partly buried and the thyasirids burrow in the sediment. The fine structure of the gills differs in the three bivalves. Bathymodiolus puteoserpentis hosts two types of bacterial symbiont, one methanotrophic, and another probably thiotrophic. The other two bivalves have single types of symbiont of different shapes. Stable isotope ratios of carbon and nitrogen indicate thiotrophy in the vesicomyid and thyasirid, but a predominance of methanotrophy in the mussel. This is the first time that such an assemblage has been found at a hydrothermal site on the Mid-Atlantic Ridge (MAR), with the different faunistic elements exploiting different energy resources
Resumo:
High-latitude seas are mostly covered by multi-year ice, which impacts processes of primary production and sedimentation of organic matter. Because of the warming effect of West Spitsbergen Current (WSC), the waters off West Spitsbergen have only winter ice cover. That is uncommon for such a high latitude and enables to separate effects of multiyear-ice cover from the latitudinal patterns. Macrofauna was sampled off Kongsfjord (79°N) along the depth gradient from 300 to 3000 m. The density, biomass and diversity at shallow sites situated in a canyon were very variable. Biomass was negatively correlated with depth (R=-0.86R=-0.86, p<0.001), and ranged from 61 g ww m−2 (212 m) to 1 g ww m−2 (2025 m). The biomasses were much higher than in the multiyear-ice covered High Arctic at similar depths, while resembling those from temperate and tropical localities. Species richness (expressed by number of species per sample and species–area accumulation curves) decreased with depth. There was no clear depth-related pattern in diversity measures: Hurbert rarefaction, Shannon–Wiener or Pielou. The classic increase of species richness and diversity with depth was not observed. Species richness and diversity of deep-sea macrofauna were much lower in our study than in comparable studies of temperate North Atlantic localities. That is related to geographic isolation of Greenland–Icelandic–Norwegian (GIN) seas from the Atlantic pool of species.