4 resultados para learning classifier systems
em Open University Netherlands
Resumo:
Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences and societal changes require innovation of existing practices. This paper proposes a framework with relevant dimensions providing insight into precipitated characteristics of designed as well as ‘fostered or grown’ networked learning initiatives. Networked learning initiatives are characterized as “goal-directed, interest-, or needs based activities of a group of (at least three) individuals that initiate interaction across the boundaries of their regular social systems”. The proposed framework is based on two existing research traditions, namely 'networked learning' and 'learning networks', comparing, integrating and building upon knowledge from both perspectives. We uncover some interesting differences between definitions, but also similarities in the way they describe what ‘networked’ means and how learning is conceptualized. We think it is productive to combine both research perspectives, since they both study the process of learning in networks extensively, albeit from different points of view, and their combination can provide valuable insights in networked learning initiatives. We uncover important features of networked learning initiatives, characterize actors and connections of which they are comprised and conditions which facilitate and support them. The resulting framework could be used both for analytic purposes and (partly) as a design framework. In this framework it is acknowledged that not all successful networks have the same characteristics: there is no standard ‘constellation’ of people, roles, rules, tools and artefacts, although there are indications that some network structures work better than others. Interactions of individuals can only be designed and fostered till a certain degree: the type of network and its ‘growth’ (e.g. in terms of the quantity of people involved, or the quality and relevance of co-created concepts, ideas, artefacts and solutions to its ‘inhabitants’) is in the hand of the people involved. Therefore, the framework consists of dimensions on a sliding scale. It introduces a structured and analytic way to look at the precipitation of networked learning initiatives: learning networks. Successive research on the application of this framework and feedback from the networked learning community is needed to further validate it’s usability and value to both research as well as practice.
Resumo:
People recommenders are a widespread feature of social networking sites and educational social learning platforms alike. However, when these systems are used to extend learners’ Personal Learning Networks, they often fall short of providing recommendations of learning value to their users. This paper proposes a design of a people recommender based on content-based user profiles, and a matching method based on dissimilarity therein. It presents the results of an experiment conducted with curators of the content curation site Scoop.it!, where curators rated personalized recommendations for contacts. The study showed that matching dissimilarity of interpretations of shared interests is more successful in providing positive experiences of breakdown for the curator than is matching on similarity. The main conclusion of this paper is that people recommenders should aim to trigger constructive experiences of breakdown for their users, as the prospect and potential of such experiences encourage learners to connect to their recommended peers.
Resumo:
Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences and societal changes require innovation of existing practices. This paper proposes a framework with relevant dimensions providing insight into precipitated characteristics of designed as well as ‘fostered or grown’ networked learning initiatives. Networked learning initiatives are characterized as “goal-directed, interest-, or needs based activities of a group of (at least three) individuals that initiate interaction across the boundaries of their regular social systems”. The proposed framework is based on two existing research traditions, namely 'networked learning' and 'learning networks', comparing, integrating and building upon knowledge from both perspectives. We uncover some interesting differences between definitions, but also similarities in the way they describe what ‘networked’ means and how learning is conceptualized. We think it is productive to combine both research perspectives, since they both study the process of learning in networks extensively, albeit from different points of view, and their combination can provide valuable insights in networked learning initiatives. We uncover important features of networked learning initiatives, characterize actors and connections of which they are comprised and conditions which facilitate and support them. The resulting framework could be used both for analytic purposes and (partly) as a design framework. In this framework it is acknowledged that not all successful networks have the same characteristics: there is no standard ‘constellation’ of people, roles, rules, tools and artefacts, although there are indications that some network structures work better than others. Interactions of individuals can only be designed and fostered till a certain degree: the type of network and its ‘growth’ (e.g. in terms of the quantity of people involved, or the quality and relevance of co-created concepts, ideas, artefacts and solutions to its ‘inhabitants’) is in the hand of the people involved. Therefore, the framework consists of dimensions on a sliding scale. It introduces a structured and analytic way to look at the precipitation of networked learning initiatives: learning networks. Successive research on the application of this framework and feedback from the networked learning community is needed to further validate it’s usability and value to both research as well as practice.
Resumo:
Intelligent Tutoring Systems (ITSs) are computerized systems for learning-by-doing. These systems provide students with immediate and customized feedback on learning tasks. An ITS typically consists of several modules that are connected to each other. This research focuses on the distribution of the ITS module that provides expert knowledge services. For the distribution of such an expert knowledge module we need to use an architectural style because this gives a standard interface, which increases the reusability and operability of the expert knowledge module. To provide expert knowledge modules in a distributed way we need to answer the research question: ‘How can we compare and evaluate REST, Web services and Plug-in architectural styles for the distribution of the expert knowledge module in an intelligent tutoring system?’. We present an assessment method for selecting an architectural style. Using the assessment method on three architectural styles, we selected the REST architectural style as the style that best supports the distribution of expert knowledge modules. With this assessment method we also analyzed the trade-offs that come with selecting REST. We present a prototype and architectural views based on REST to demonstrate that the assessment method correctly scores REST as an appropriate architectural style for the distribution of expert knowledge modules.