2 resultados para Text Analysis

em Open University Netherlands


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The current study builds upon a previous study, which examined the degree to which the lexical properties of students’ essays could predict their vocabulary scores. We expand on this previous research by incorporating new natural language processing indices related to both the surface- and discourse-levels of students’ essays. Additionally, we investigate the degree to which these NLP indices can be used to account for variance in students’ reading comprehension skills. We calculated linguistic essay features using our framework, ReaderBench, which is an automated text analysis tools that calculates indices related to linguistic and rhetorical features of text. University students (n = 108) produced timed (25 minutes), argumentative essays, which were then analyzed by ReaderBench. Additionally, they completed the Gates-MacGinitie Vocabulary and Reading comprehension tests. The results of this study indicated that two indices were able to account for 32.4% of the variance in vocabulary scores and 31.6% of the variance in reading comprehension scores. Follow-up analyses revealed that these models further improved when only considering essays that contained multiple paragraph (R2 values = .61 and .49, respectively). Overall, the results of the current study suggest that natural language processing techniques can help to inform models of individual differences among student writers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we introduce the online version of our ReaderBench framework, which includes multi-lingual comprehension-centered web services designed to address a wide range of individual and collaborative learning scenarios, as follows. First, students can be engaged in reading a course material, then eliciting their understanding of it; the reading strategies component provides an in-depth perspective of comprehension processes. Second, students can write an essay or a summary; the automated essay grading component provides them access to more than 200 textual complexity indices covering lexical, syntax, semantics and discourse structure measurements. Third, students can start discussing in a chat or a forum; the Computer Supported Collaborative Learning (CSCL) component provides indepth conversation analysis in terms of evaluating each member’s involvement in the CSCL environments. Eventually, the sentiment analysis, as well as the semantic models and topic mining components enable a clearer perspective in terms of learner’s points of view and of underlying interests.