5 resultados para Sensor-based Learning
em Open University Netherlands
Resumo:
Demo paper about the booth
Resumo:
Full paper presented at EC-TEL 2016
Resumo:
This paper is concerned with several of the most important aspects of Competence-Based Learning (CBL): course authoring, assignments, and categorization of learning content. The latter is part of the so-called Bologna Process (BP) and can effectively be supported by integrating knowledge resources like, e.g., standardized skill and competence taxonomies into the target implementation approach, aiming at making effective use of an open integration architecture while fostering the interoperability of hybrid knowledge-based e-learning solutions. Modern scenarios ask for interoperable software solutions to seamlessly integrate existing e-learning infrastructures and legacy tools with innovative technologies while being cognitively efficient to handle. In this way, prospective users are enabled to use them without learning overheads. At the same time, methods of Learning Design (LD) in combination with CBL are getting more and more important for production and maintenance of easy to facilitate solutions. We present our approach of developing a competence-based course-authoring and assignment support software. It is bridging the gaps between contemporary Learning Management Systems (LMS) and established legacy learning infrastructures by embedding existing resources via Learning Tools Interoperability (LTI). Furthermore, the underlying conceptual architecture for this integration approach will be explained. In addition, a competence management structure based on knowledge technologies supporting standardized skill and competence taxonomies will be introduced. The overall goal is to develop a software solution which will not only flawlessly merge into a legacy platform and several other learning environments, but also remain intuitively usable. As a proof of concept, the so-called platform independent conceptual architecture model will be validated by a concrete use case scenario.
Resumo:
Social media tools are increasingly popular in Computer Supported Collaborative Learning and the analysis of students' contributions on these tools is an emerging research direction. Previous studies have mainly focused on examining quantitative behavior indicators on social media tools. In contrast, the approach proposed in this paper relies on the actual content analysis of each student's contributions in a learning environment. More specifically, in this study, textual complexity analysis is applied to investigate how student's writing style on social media tools can be used to predict their academic performance and their learning style. Multiple textual complexity indices are used for analyzing the blog and microblog posts of 27 students engaged in a project-based learning activity. The preliminary results of this pilot study are encouraging, with several indexes predictive of student grades and/or learning styles.
Resumo:
This study investigates the degree to which textual complexity indices applied on students’ online contributions, corroborated with a longitudinal analysis performed on their weekly posts, predict academic performance. The source of student writing consists of blog and microblog posts, created in the context of a project-based learning scenario run on our eMUSE platform. Data is collected from six student cohorts, from six consecutive installments of the Web Applications Design course, comprising of 343 students. A significant model was obtained by relying on the textual complexity and longitudinal analysis indices, applied on the English contributions of 148 students that were actively involved in the undertaken projects.