1 resultado para Probabilistic metrics
em Open University Netherlands
Filtro por publicador
- Aberdeen University (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (8)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (62)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (9)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (48)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (3)
- Cochin University of Science & Technology (CUSAT), India (4)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (92)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (10)
- Digital Commons - Michigan Tech (6)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (25)
- DRUM (Digital Repository at the University of Maryland) (5)
- Duke University (4)
- Galway Mayo Institute of Technology, Ireland (2)
- Glasgow Theses Service (2)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (69)
- Instituto Superior de Psicologia Aplicada - Lisboa (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (15)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- Nottingham eTheses (2)
- Open University Netherlands (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (2)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (35)
- Repositório da Produção Científica e Intelectual da Unicamp (17)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (8)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (16)
- Repositorio Institucional Universidad de Medellín (1)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (60)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (1)
- Scielo España (1)
- Scielo Saúde Pública - SP (25)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (6)
- Universidad Politécnica de Madrid (34)
- Universidade do Minho (21)
- Universidade dos Açores - Portugal (10)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (135)
- Université de Montréal, Canada (5)
- University of Canberra Research Repository - Australia (1)
- University of Connecticut - USA (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (49)
- University of Washington (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Clustering algorithms, pattern mining techniques and associated quality metrics emerged as reliable methods for modeling learners’ performance, comprehension and interaction in given educational scenarios. The specificity of available data such as missing values, extreme values or outliers, creates a challenge to extract significant user models from an educational perspective. In this paper we introduce a pattern detection mechanism with-in our data analytics tool based on k-means clustering and on SSE, silhouette, Dunn index and Xi-Beni index quality metrics. Experiments performed on a dataset obtained from our online e-learning platform show that the extracted interaction patterns were representative in classifying learners. Furthermore, the performed monitoring activities created a strong basis for generating automatic feedback to learners in terms of their course participation, while relying on their previous performance. In addition, our analysis introduces automatic triggers that highlight learners who will potentially fail the course, enabling tutors to take timely actions.