7 resultados para Knowledge system
em Open University Netherlands
Resumo:
Paper presented at the Cloud Forward Conference 2015, October 6th-8th, Pisa
Resumo:
The EU-based industry for non-leisure games is an emerging business. As such it is still fragmented and needs to achieve critical mass to compete globally. Nevertheless its growth potential is widely recognized. To become competitive the relevant applied gaming communities and SMEs require support by fostering the generation of innovation potential. The European project Realizing an Applied Gaming Ecosystem (RAGE) is aiming at supporting this challenge. RAGE will help by making available an interoperable set of advanced technology assets, tuned to applied gaming, as well as proven practices of using asset-based applied games in various real-world contexts, and finally a centralized access to a wide range of applied gaming software modules, services and related document, media, and educational resources within an online community portal called the RAGE Ecosystem. It is based on an integrational, user-centered approach of Knowledge Management and Innovation Processes in the shape of a service-based implementation.
Resumo:
Nistor, N., Dascalu, M., Stavarache, L.L., Serafin, Y., & Trausan-Matu, S. (2015). Informal Learning in Online Knowledge Communities: Predicting Community Response to Visitor Inquiries. In G. Conole, T. Klobucar, C. Rensing, J. Konert & É. Lavoué (Eds.), 10th European Conf. on Technology Enhanced Learning (pp. 447–452). Toledo, Spain: Springer.
Resumo:
Nistor, N., Dascalu, M., Stavarache, L.L., Tarnai, C., & Trausan-Matu, S. (2015). Predicting Newcomer Integration in Online Knowledge Communities by Automated Dialog Analysis. In Y. Li, M. Chang, M. Kravcik, E. Popescu, R. Huang, Kinshuk & N.-S. Chen (Eds.), State-of-the-Art and Future Directions of Smart Learning (Vol. Lecture Notes in Educational Technology, pp. 13–17). Berlin, Germany: Springer-Verlag Singapur
Resumo:
This thesis explores how to design a peer support system to facilitate self-organized knowledge sharing in non-formal learning environments, in particular when learners work on complex tasks. The peer support system aims to replace two teacher-led didactic arrangements: selecting a tutor at the initial stage, and guidance during the interaction process (Dillenbourg, 1999; Topping, 1996). Such a system has previously been developed by Van Rosmalen (2008) and De Bakker (2010) and has been tentatively used to facilitate knowledge sharing on content-related questions. In this thesis, we would like to find out how to further improve the design of this peer support system, especially to facilitate knowledge sharing on complex tasks. Since little pedagogical theory is available to inform the design of our peer support system, this thesis attempts to apply cognitive load theory (Sweller, Van Merriënboer, & Paas, 1998; Van Merriënboer & Sweller, 2005) that informs instructional designs in classroom settings to the design of our peer support system in Learning Networks.
Resumo:
Using online knowledge communities (OKCs) as informal learning environments poses the question how likely these will integrate newcomers as peripheral participants. Previous research has identified surface characteristics of the OKC dialog as integrativity predictors. Yet, little is known about the role of dialogic textual complexity. This contribution proposes a comprehensive approach based on previously validated textual complexity indexes and applies it to predict OKC integrativity. The dialog analysis of N = 14 blogger communities with a total of 1937 participants identified three main components of textual complexity: dialog participation, structure and cohesion. From these, dialog cohesion was higher in integrative OKCs, thus significantly predicting OKC integrativity. This result adds to previous OKC research by uncovering the depth of OKC discourse. For educational practice, the study suggests a way of empowering learners by automatically assessing the integrativity of OKCs in which they may attempt to participate and access community knowledge.
Resumo:
Intelligent Tutoring Systems (ITSs) are computerized systems for learning-by-doing. These systems provide students with immediate and customized feedback on learning tasks. An ITS typically consists of several modules that are connected to each other. This research focuses on the distribution of the ITS module that provides expert knowledge services. For the distribution of such an expert knowledge module we need to use an architectural style because this gives a standard interface, which increases the reusability and operability of the expert knowledge module. To provide expert knowledge modules in a distributed way we need to answer the research question: ‘How can we compare and evaluate REST, Web services and Plug-in architectural styles for the distribution of the expert knowledge module in an intelligent tutoring system?’. We present an assessment method for selecting an architectural style. Using the assessment method on three architectural styles, we selected the REST architectural style as the style that best supports the distribution of expert knowledge modules. With this assessment method we also analyzed the trade-offs that come with selecting REST. We present a prototype and architectural views based on REST to demonstrate that the assessment method correctly scores REST as an appropriate architectural style for the distribution of expert knowledge modules.