6 resultados para Design-Build-Test, Project-Based-Learning
em Open University Netherlands
Resumo:
This study investigates the degree to which textual complexity indices applied on students’ online contributions, corroborated with a longitudinal analysis performed on their weekly posts, predict academic performance. The source of student writing consists of blog and microblog posts, created in the context of a project-based learning scenario run on our eMUSE platform. Data is collected from six student cohorts, from six consecutive installments of the Web Applications Design course, comprising of 343 students. A significant model was obtained by relying on the textual complexity and longitudinal analysis indices, applied on the English contributions of 148 students that were actively involved in the undertaken projects.
Resumo:
Social media tools are increasingly popular in Computer Supported Collaborative Learning and the analysis of students' contributions on these tools is an emerging research direction. Previous studies have mainly focused on examining quantitative behavior indicators on social media tools. In contrast, the approach proposed in this paper relies on the actual content analysis of each student's contributions in a learning environment. More specifically, in this study, textual complexity analysis is applied to investigate how student's writing style on social media tools can be used to predict their academic performance and their learning style. Multiple textual complexity indices are used for analyzing the blog and microblog posts of 27 students engaged in a project-based learning activity. The preliminary results of this pilot study are encouraging, with several indexes predictive of student grades and/or learning styles.
Resumo:
This paper is concerned with several of the most important aspects of Competence-Based Learning (CBL): course authoring, assignments, and categorization of learning content. The latter is part of the so-called Bologna Process (BP) and can effectively be supported by integrating knowledge resources like, e.g., standardized skill and competence taxonomies into the target implementation approach, aiming at making effective use of an open integration architecture while fostering the interoperability of hybrid knowledge-based e-learning solutions. Modern scenarios ask for interoperable software solutions to seamlessly integrate existing e-learning infrastructures and legacy tools with innovative technologies while being cognitively efficient to handle. In this way, prospective users are enabled to use them without learning overheads. At the same time, methods of Learning Design (LD) in combination with CBL are getting more and more important for production and maintenance of easy to facilitate solutions. We present our approach of developing a competence-based course-authoring and assignment support software. It is bridging the gaps between contemporary Learning Management Systems (LMS) and established legacy learning infrastructures by embedding existing resources via Learning Tools Interoperability (LTI). Furthermore, the underlying conceptual architecture for this integration approach will be explained. In addition, a competence management structure based on knowledge technologies supporting standardized skill and competence taxonomies will be introduced. The overall goal is to develop a software solution which will not only flawlessly merge into a legacy platform and several other learning environments, but also remain intuitively usable. As a proof of concept, the so-called platform independent conceptual architecture model will be validated by a concrete use case scenario.
Resumo:
This is a pre-print for personal use only. Please refer to the Springer website for the official, published version http://www.springer.com/978-3-662-52923-2
Resumo:
The established (digital) leisure game industry is historically one dominated by large international hardware vendors (e.g. Sony, Microsoft and Nintendo), major publishers and supported by a complex network of development studios, distributors and retailers. New modes of digital distribution and development practice are challenging this business model and the leisure games industry landscape is one experiencing rapid change. The established (digital) leisure games industry, at least anecdotally, appears reluctant to participate actively in the applied games sector (Stewart et al., 2013). There are a number of potential explanations as to why this may indeed be the case including ; A concentration on large-scale consolidation of their (proprietary) platforms, content, entertainment brand and credibility which arguably could be weakened by association with the conflicting notion of purposefulness (in applied games) in market niches without clear business models or quantifiable returns on investment. In contrast, the applied games industry exhibits the characteristics of an emerging, immature industry namely: weak interconnectedness, limited knowledge exchange, an absence of harmonising standards, limited specialisations, limited division of labour and arguably insufficient evidence of the products efficacies (Stewart et al., 2013; Garcia Sanchez, 2013) and could, arguably, be characterised as a dysfunctional market. To test these assertions the Realising an Applied Gaming Ecosystem (RAGE) project will develop a number of self contained gaming assets to be actively employed in the creation of a number of applied games to be implemented and evaluated as regional pilots across a variety of European educational, training and vocational contexts. RAGE is a European Commission Horizon 2020 project with twenty (pan European) partners from industry, research and education with the aim of developing, transforming and enriching advanced technologies from the leisure games industry into self-contained gaming assets (i.e. solutions showing economic value potential) that could support a variety of stakeholders including teachers, students, and, significantly, game studios interested in developing applied games. RAGE will provide these assets together with a large quantity of high-quality knowledge resources through a self-sustainable Ecosystem, a social space that connects research, the gaming industries, intermediaries, education providers, policy makers and end-users in order to stimulate the development and application of applied games in educational, training and vocational contexts. The authors identify barriers (real and perceived) and opportunities facing stakeholders in engaging, exploring new emergent business models ,developing, establishing and sustaining an applied gaming eco system in Europe.
Resumo:
Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences and societal changes require innovation of existing practices. This paper proposes a framework with relevant dimensions providing insight into precipitated characteristics of designed as well as ‘fostered or grown’ networked learning initiatives. Networked learning initiatives are characterized as “goal-directed, interest-, or needs based activities of a group of (at least three) individuals that initiate interaction across the boundaries of their regular social systems”. The proposed framework is based on two existing research traditions, namely 'networked learning' and 'learning networks', comparing, integrating and building upon knowledge from both perspectives. We uncover some interesting differences between definitions, but also similarities in the way they describe what ‘networked’ means and how learning is conceptualized. We think it is productive to combine both research perspectives, since they both study the process of learning in networks extensively, albeit from different points of view, and their combination can provide valuable insights in networked learning initiatives. We uncover important features of networked learning initiatives, characterize actors and connections of which they are comprised and conditions which facilitate and support them. The resulting framework could be used both for analytic purposes and (partly) as a design framework. In this framework it is acknowledged that not all successful networks have the same characteristics: there is no standard ‘constellation’ of people, roles, rules, tools and artefacts, although there are indications that some network structures work better than others. Interactions of individuals can only be designed and fostered till a certain degree: the type of network and its ‘growth’ (e.g. in terms of the quantity of people involved, or the quality and relevance of co-created concepts, ideas, artefacts and solutions to its ‘inhabitants’) is in the hand of the people involved. Therefore, the framework consists of dimensions on a sliding scale. It introduces a structured and analytic way to look at the precipitation of networked learning initiatives: learning networks. Successive research on the application of this framework and feedback from the networked learning community is needed to further validate it’s usability and value to both research as well as practice.