3 resultados para Complexity Metrics
em Open University Netherlands
Resumo:
Using online knowledge communities (OKCs) as informal learning environments poses the question how likely these will integrate newcomers as peripheral participants. Previous research has identified surface characteristics of the OKC dialog as integrativity predictors. Yet, little is known about the role of dialogic textual complexity. This contribution proposes a comprehensive approach based on previously validated textual complexity indexes and applies it to predict OKC integrativity. The dialog analysis of N = 14 blogger communities with a total of 1937 participants identified three main components of textual complexity: dialog participation, structure and cohesion. From these, dialog cohesion was higher in integrative OKCs, thus significantly predicting OKC integrativity. This result adds to previous OKC research by uncovering the depth of OKC discourse. For educational practice, the study suggests a way of empowering learners by automatically assessing the integrativity of OKCs in which they may attempt to participate and access community knowledge.
Resumo:
Clustering algorithms, pattern mining techniques and associated quality metrics emerged as reliable methods for modeling learners’ performance, comprehension and interaction in given educational scenarios. The specificity of available data such as missing values, extreme values or outliers, creates a challenge to extract significant user models from an educational perspective. In this paper we introduce a pattern detection mechanism with-in our data analytics tool based on k-means clustering and on SSE, silhouette, Dunn index and Xi-Beni index quality metrics. Experiments performed on a dataset obtained from our online e-learning platform show that the extracted interaction patterns were representative in classifying learners. Furthermore, the performed monitoring activities created a strong basis for generating automatic feedback to learners in terms of their course participation, while relying on their previous performance. In addition, our analysis introduces automatic triggers that highlight learners who will potentially fail the course, enabling tutors to take timely actions.
Resumo:
Social media tools are increasingly popular in Computer Supported Collaborative Learning and the analysis of students' contributions on these tools is an emerging research direction. Previous studies have mainly focused on examining quantitative behavior indicators on social media tools. In contrast, the approach proposed in this paper relies on the actual content analysis of each student's contributions in a learning environment. More specifically, in this study, textual complexity analysis is applied to investigate how student's writing style on social media tools can be used to predict their academic performance and their learning style. Multiple textual complexity indices are used for analyzing the blog and microblog posts of 27 students engaged in a project-based learning activity. The preliminary results of this pilot study are encouraging, with several indexes predictive of student grades and/or learning styles.