4 resultados para B-LEARNING
em Open University Netherlands
Resumo:
The proliferation of smartphones in the last decade and the number of publications in the field of authoring systems for computer-assisted learning depict a scenario that needs to be explored in order to facilitate the scaffolding of learning activities across contexts. Learning resources are traditionally designed in desktop-based authoring systems where the context is mostly restricted to the learning objective, capturing relevant case characteristics, or virtual situation models. Mobile authoring tools enable learners and teachers to foster universal access to educational resources not only providing channels to share, remix or re-contextualize these, but also capturing the context in-situ and in-time. As a further matter, authoring educational resources in a mobile context is an authentic experience where authors can link learning with their own daily life activities and reflections. The contribution of this manuscript is fourfold: first, the main barriers for ubiquitous and mobile authoring of educational resources are identified; second, recent research on mobile authoring tools is reviewed, and 10 key shortcomings of current approaches are identified; third, the design of a mobile environment to author educational resources (MAT for ARLearn) is presented, and the results of an evaluation of usability and hedonic quality are presented; fourth, conclusions and a research agenda for mobile authoring are discussed.
Resumo:
This paper is concerned with several of the most important aspects of Competence-Based Learning (CBL): course authoring, assignments, and categorization of learning content. The latter is part of the so-called Bologna Process (BP) and can effectively be supported by integrating knowledge resources like, e.g., standardized skill and competence taxonomies into the target implementation approach, aiming at making effective use of an open integration architecture while fostering the interoperability of hybrid knowledge-based e-learning solutions. Modern scenarios ask for interoperable software solutions to seamlessly integrate existing e-learning infrastructures and legacy tools with innovative technologies while being cognitively efficient to handle. In this way, prospective users are enabled to use them without learning overheads. At the same time, methods of Learning Design (LD) in combination with CBL are getting more and more important for production and maintenance of easy to facilitate solutions. We present our approach of developing a competence-based course-authoring and assignment support software. It is bridging the gaps between contemporary Learning Management Systems (LMS) and established legacy learning infrastructures by embedding existing resources via Learning Tools Interoperability (LTI). Furthermore, the underlying conceptual architecture for this integration approach will be explained. In addition, a competence management structure based on knowledge technologies supporting standardized skill and competence taxonomies will be introduced. The overall goal is to develop a software solution which will not only flawlessly merge into a legacy platform and several other learning environments, but also remain intuitively usable. As a proof of concept, the so-called platform independent conceptual architecture model will be validated by a concrete use case scenario.
Resumo:
Networked learning happens naturally within the social systems of which we are all part. However, in certain circumstances individuals may want to actively take initiative to initiate interaction with others they are not yet regularly in exchange with. This may be the case when external influences and societal changes require innovation of existing practices. This paper proposes a framework with relevant dimensions providing insight into precipitated characteristics of designed as well as ‘fostered or grown’ networked learning initiatives. Networked learning initiatives are characterized as “goal-directed, interest-, or needs based activities of a group of (at least three) individuals that initiate interaction across the boundaries of their regular social systems”. The proposed framework is based on two existing research traditions, namely 'networked learning' and 'learning networks', comparing, integrating and building upon knowledge from both perspectives. We uncover some interesting differences between definitions, but also similarities in the way they describe what ‘networked’ means and how learning is conceptualized. We think it is productive to combine both research perspectives, since they both study the process of learning in networks extensively, albeit from different points of view, and their combination can provide valuable insights in networked learning initiatives. We uncover important features of networked learning initiatives, characterize actors and connections of which they are comprised and conditions which facilitate and support them. The resulting framework could be used both for analytic purposes and (partly) as a design framework. In this framework it is acknowledged that not all successful networks have the same characteristics: there is no standard ‘constellation’ of people, roles, rules, tools and artefacts, although there are indications that some network structures work better than others. Interactions of individuals can only be designed and fostered till a certain degree: the type of network and its ‘growth’ (e.g. in terms of the quantity of people involved, or the quality and relevance of co-created concepts, ideas, artefacts and solutions to its ‘inhabitants’) is in the hand of the people involved. Therefore, the framework consists of dimensions on a sliding scale. It introduces a structured and analytic way to look at the precipitation of networked learning initiatives: learning networks. Successive research on the application of this framework and feedback from the networked learning community is needed to further validate it’s usability and value to both research as well as practice.
Resumo:
People recommenders are a widespread feature of social networking sites and educational social learning platforms alike. However, when these systems are used to extend learners’ Personal Learning Networks, they often fall short of providing recommendations of learning value to their users. This paper proposes a design of a people recommender based on content-based user profiles, and a matching method based on dissimilarity therein. It presents the results of an experiment conducted with curators of the content curation site Scoop.it!, where curators rated personalized recommendations for contacts. The study showed that matching dissimilarity of interpretations of shared interests is more successful in providing positive experiences of breakdown for the curator than is matching on similarity. The main conclusion of this paper is that people recommenders should aim to trigger constructive experiences of breakdown for their users, as the prospect and potential of such experiences encourage learners to connect to their recommended peers.