3 resultados para wideband small-aperture evanescent-mode waveguide antenna designs

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deployment of OECBs (opto-electrical circuit boards) is expected to make a significant impact in the telecomm switches arena within the next five years. This will create optical backplanes with high speed point-to-point optical interconnects. The crucial aspect in the manufacturing process of the optical backplane is the successful coupling between VCSEL (vertical cavity surface emitting laser) device and embedded waveguide in the OECB. The results from a thermo-mechanical analysis are being used in a purely optical model, which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the modelling are being investigated using DOE analysis to identify packaging parameters that minimise misalignment. This is achieved via a specialist optimisation software package. Results from the thermomechanical and optical models are discussed as are experimental results from the DOE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. The critical aspect in the manufacture of the optical backplane is the successful coupling between VCSEL (Vertical Cavity Surface Emitting Laser) device and embedded waveguide in the OECB. Optical performance will be affected by CTE mismatch in the material properties, and manufacturing tolerances. This paper will discuss results from a multidisciplinary research project involving both experimentation and modelling. Key process parameters are being investigated using Design of Experiments and Finite Element Modelling. Simulations have been undertaken that predict the temperature in the VCSEL during normal operation, and the subsequent misalignment that this imposes. The results from the thermomechanical analysis are being used with optimisation software and the experimental DOE (Design of Experiments) to identify packaging parameters that minimise misalignment. These results are also imported into an optical model which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the thermomechanical and optical models will be discussed as will the experimental results from the DOE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that remote monitoring of pulmonary activity can be achieved using ultra-wideband (UWB) systems, which shows promise in home healthcare, rescue, and security applications. In this paper, we first present a multi-ray propagation model for UWB signal, which is traveling through the human thorax and is reflected on the air/dry-skin/fat/muscle interfaces. A geometry-based statistical channel model is then developed for simulating the reception of UWB signals in the indoor propagation environment. This model enables replication of time-varying multipath profiles due to the displacement of a human chest. Subsequently, a UWB distributed cognitive radar system (UWB-DCRS) is developed for the robust detection of chest cavity motion and the accurate estimation of respiration rate. The analytical framework can serve as a basis in the planning and evaluation of future measurement programs. We also provide a case study on how the antenna beamwidth affects the estimation of respiration rate based on the proposed propagation models and system architecture