2 resultados para voltammetry of microparticles
em Greenwich Academic Literature Archive - UK
Resumo:
The absorption spectra. cyclic voltammetry and spectroelectrochemistry of [Ni(II)DPTAA] and [Co(II)DPTAA] (DPTAA = 6,13-diphenyldibenzo[b,i][1,4,8,11] tetraaza[14]annulene) complexes in DMF are reported in detail. The ligand oxidation is observed for [Ni(II)DPTAA] at +0.70 V vs. SCE whereas Ni2(+/+) occurs at - 1.60 V. For [Co(II)DPTAA], a ligand oxidation redox couple is seen at +0.56 V while the Co2+/+ and Co2+/3+ redox couples appear at -1.21 and +0.24 V, respectively. All observed redox couples are assigned to reversible one-electron processes on account of peak separations and scan-rate dependency. These processes were further investigated by spectroelectrochemistry for [Co(II)DPTAA]. For [Co(II)DPTAA], axial ligation of pyridine was found to shift the Co2+/3+ redox couple more negative. while the ligand oxidation was shifted to more positive potentials. From a spectrophotometric titration of [Co(II)DPTAA] with pyridine an equilibrium constant, K-f, was determined for the binding of pyridine to [Co(II)DPTAA]. This was found to be 10.2 dm(3) mol(-1), slightly lower than that of [Co(II)TAA], indicating the influence of the phenyl groups. From this value and shifts in the Co2+/3+ redox couple upon ligation, an equilibrium constant for the binding of pyridine to [Co(III)DPTAA], K'(f), was found to be 5.06 x 10(6) dm(3) mol(-1). (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Purpose: A novel methodology has been introduced to effectively coat intravascular stents with sirolimus-loaded polymeric microparticles. Methods: Dry powders of the microparticulate formulation, consisting of non-erodible polymers, were produced by a supercritical, aerosol, solvent extraction system (ASES). A design of experiment (DOE) approach was conducted on the independent variables, such as organic/CO2 phase volume ratio, polymer weight and stirring-rate, while regression analysis was utilized to interpret the influence of all operational parameters on the dependent variable of particle size. The dry powders, so formed, entered an electric field created by corona charging and were sprayed on the earthed metal stent. Furthermore, the thermal stability of sirolimus was investigated to define the optimum conditions for fusion to the metal surfaces. Results: The electrostatic dry powder deposition technology (EDPDT) was used on the metal strut followed by fusion to produce uniform, reproducible and accurate coatings. The coated stents exhibited sustained release profiles over 25 days, similar to commercial products. EDPDT-coated stents displayed significant reduced platelet adhesion. Conclusions: EDPDT appeared to be a robust accurate and reproducible technology to coat eluting stents.