10 resultados para vehicle velocity
em Greenwich Academic Literature Archive - UK
Resumo:
Multilevel approaches to computational problems are pervasive across many areas of applied mathematics and scientific computing. The multilevel paradigm uses recursive coarsening to create a hierarchy of approximations to the original problem, then an initial solution is found for the coarsest problem and iteratively refined and improved at each level, coarsest to finest. The solution process is aided by the global perspective (or `global view') imparted to the optimisation by the coarsening. This paper looks at their application to the Vehicle Routing Problem.
Resumo:
A two dimensional staggered unstructured discretisation scheme for the solution of fluid flow problems has been developed. This scheme stores and solves the velocity vector resolutes normal and parallel to each cell face and other scalar variables (pressure, temperature) are stored at cell centres. The coupled momentum; continuity and energy equations are solved, using the well known pressure correction algorithm SIMPLE. The method is tested for accuracy and convergence behaviour against standard cell-centre solutions in a number of benchmark problems: The Lid-Driven Cavity, Natural Convection in a Cavity and the Melting of Gallium in a rectangular domain.
Resumo:
A rigid wall model has been used widely in the numerical simulation of rail vehicle impacts. Finite element impact modelling of rail vehicles is generally based on a half-width and full-length or half-length structure, depending on the symmetry. The structure and components of rail vehicles are normally designed to cope with proof loading to ensure adequate ride performance. In this paper, the authors present a study of a rail vehicle with driving cab focused on improving the modelling approach and exploring the intrinsic structural weaknesses to enhance its crashworthiness. The underpinning research used finite element analysis and compared the behaviour of the rail vehicle in different impact scenarios. It was found that the simulation of a rigid wall impact can mask structural weaknesses; that even a completely symmetrical impact may lead to an asymmetrical result; that downward bending is an intrinsic weakness of conventional rail vehicles and that a rigid part of the vehicle structure, such as the body bolster, may cause uncoordinated deformation and shear fracture between the vehicle sections. These findings have significance for impact simulation, the full-scale testing of rail vehicles and rail vehicle design in general.
Resumo:
We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL algorithm, which uses a combination of standard VRP heuristics, is developed first to solve instances of the VRP. A ML version, which extends the global view of these heuristics, is then created, using variants of the construction and improvement heuristics at each level. Finally some multilevel enhancements are developed. Experimentation is used to find suitable parameter settings and the final version is tested on two well-known VRP benchmark suites. Results comparing both SL and ML algorithms are presented.
Resumo:
We discuss the application of the multilevel (ML) refinement technique to the Vehicle Routing Problem (VRP), and compare it to its single-level (SL) counterpart. Multilevel refinement recursively coarsens to create a hierarchy of approximations to the problem and refines at each level. A SL heuristic, termed the combined node-exchange composite heuristic (CNCH), is developed first to solve instances of the VRP. A ML version (the ML-CNCH) is then created, using the construction and improvement heuristics of the CNCH at each level. Experimentation is used to find a suitable combination, which extends the global view of these heuristics. Results comparing both SL and ML are presented.
Resumo:
In the current paper, the authors present an analysis of the structural characteristics of an intermediate rail vehicle and their effects on crash performance of the vehicle. Theirs is a simulation based analysis involving four stages. First, the crashworthiness of the vehicle is assessed by simulating an impact of the vehicle with a rigid wall. Second, the structural characteristics of the vehicle are analysed based on the structural behaviour during this impact and then the structure is modified. Third, the modified vehicle is tested again in the same impact scenario with a rigid wall. Finally, the modified vehicle is subjected to a modelled head-on impact which mirrors the real-life impact interface between two intermediate vehicles in a train impact. The emphasis of the current study is on the structural characteristics of the intermediate vehicle and the differences compared to an impact of a leading vehicle. The study shows that, similar to a leading vehicle, bending, or jackknifing is a main form of failure in this conventionally designed intermediate vehicle. It has also been found that the location of the door openings creates a major difference in the behaviour of an intermediate vehicle. It causes instability of the vehicle in the door area and leads to high stresses at the joint of the end beam with the solebar and shear stresses at the joint of the inner pillar with the cantrail. Apart from this, the shapes of the vehicle ends and impact interfaces are also different and have an effect on the crash performance of the vehicles. The simulation results allow the identification of the structural characteristics and show the effectiveness of relevant modifications. The conclusions have general relevance for the crashworthiness of rail vehicle design
Resumo:
Gas-solids two phase systems are widely employed within process plant in the form of pneumatic conveyors, dust extraction systems and solid fuel injection systems. The measurement of solids phase velocity therefore has wide potential application in flow monitoring and, in conjunction with density measurement instrumentation, solids mass flow rate measurement. Historically, a number of authors have detailed possible measurement techniques, and some have published limited test results. It is, however, apparent that none of these technologies have found wide application in industry. Solids phase velocity measurements were undertaken using real time cross correlation of signals from two electrostatic sensors spaced axially along a pipeline conveying pulverised coal (PF). Details of the measurement equipment, the pilot scale test rig and the test results are presented.
Resumo:
The measurement of particle velocities in two-phase gas-solid systems has a wide application in flow monitoring in process plant, where two-phase gas-solids systems are frequently employed in the form of pneumatic conveyors and solid fuel injection systems. Such measurements have proved to be difficult to make reliably in industrial environments. This paper details particle velocity measurements made in a two phase gas-solid now utilising a laser Doppler velocimetry system. Tests were carried out using both wheat flour and pulverised coal as the solids phase, with air being used as the gaseous phase throughout. A pipeline of circular section, having a diameter of 53 mm was used for the test work, with air velocities ranging from 25 to 45 m/s and suspension densities ranging from 0.001 kg to 1 kg of solids per cubic meter of air. Details of both the test equipment used, and the results of the measurements are presented.
Resumo:
Theoretical and experimental studies of cross correlation techniques applied to non-restrictive velocity measurement of pneumatically conveyed solids using ring-shaped electrodynamic flow sensors are presented. In-depth studies of the electrodynamic sensing mechanism, and also of the spatial sensitivity and spatial filtering properties of the sensor are included, together with their relationships to measurement accuracy and the effects of solids' velocity profiles. The experimental evaluation of a 53 mm bore sensing head is described, including trials using a calibrated pneumatic conveyor circulating pulverized fuel and cement. Comparisons of test results with the mathematical models of the sensor are used to identify important aspects of the instrument design. Off-line test results obtained using gravity-fed solids flow show that the system repeatability is within +/-0.5% over the velocity range of 2-4 m s(-1) for volumetric concentrations of solids no greater than 0.2%. Results obtained in the pilot-plant trials demonstrate that the system is capable of achieving repeatability better than +/-2% and linearity within +/-2% over the velocity range 20-40 m s(-1) for volumetric concentrations of solids in the range 0.01-0.44%.