5 resultados para ultra-high strenth steel

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria, cabin crew training and in post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. In this paper the capabilities and limitations of the airEXODUS evacuation model are described. Its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described. Finally, the data requiremnets of the airEXODUS evacuation model is discussed along with several projects currently underway at the the Univesity of Greenwich designed to obtain this data. Included in this discussion is a description of the AASK - Aircraft Accident Statistics and Knowledge - data base which contains detailed information from aircraft accident survivors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in cabin crew training and post mortuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation `Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing large-scale evacuation experiments for the next generation ultra high capacity aircraft (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. This paper describes the capabilities and limitations of the airEXODUS evacuation model and some attempts at validation, including its successful application to the prediction of a recent certification trial, prior to the actual trial taking place. Also described is a newly defined performance parameter known as OPS that can be used as a measure of evacuation trial optimality. In addition, sample evacuation simulations in the presence of fire atmospheres are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in post mortuuum accident investigation. As the risk of personal injury and costs involved in performing large-scale evacuation experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be high, the development and use of these evacuation modelling tools may become essential if these aircraft are to prove a viable reality. In this paper the capabilities and limitation of the air-EXODUS evacuation model are described. Its successful application to the prediction of a recent certificaiton trial, prior to the actual trial taking place, is described. Also described is a newly defined parameter known as OPS which can be used as a measure of evacuation trial optimality. Finally, the data requirements of aircraft evacuation models is discussed along with several projects currently underway at the University of Greenwich designed to obtain this data. Included in this discussion is a description of the AASK - Aircraft Accident Statistics and Knowledge - data base which contains detailed information from aircraft accident survivors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer based mathematical models describing aircraft fire have a role to play in the design and development of safer aircraft, in the implementation of safer and more rigorous certification criteria and in post mortuum accident investigation. As the cost involved in performing large-scale fire experiments for the next generation 'Ultra High Capacity Aircraft' (UHCA) are expected to be prohibitively high, the development and use of these modelling tools may become essential if these aircraft are to prove a safe and viable reality. By describing the present capabilities and limitations of aircraft fire models, this paper will examine the future development of these models in the areas of large scale applications through parallel computing, combustion modelling and extinguishment modelling.