3 resultados para two-to-one trapdoor functions
em Greenwich Academic Literature Archive - UK
Resumo:
In this paper we discuss the relationship and characterization of stochastic comparability, duality, and Feller–Reuter–Riley transition functions which are closely linked with each other for continuous time Markov chains. A necessary and sufficient condition for two Feller minimal transition functions to be stochastically comparable is given in terms of their density q-matrices only. Moreover, a necessary and sufficient condition under which a transition function is a dual for some stochastically monotone q-function is given in terms of, again, its density q-matrix. Finally, for a class of q-matrices, the necessary and sufficient condition for a transition function to be a Feller–Reuter–Riley transition function is also given.
Resumo:
The paper considers the job shop scheduling problem to minimize the makespan. It is assumed that each job consists of at most two operations, one of which is to be processed on one of m⩾2 machines, while the other operation must be performed on a single bottleneck machine, the same for all jobs. For this strongly NP-hard problem we present two heuristics with improved worst-case performance. One of them guarantees a worst-case performance ratio of 3/2. The other algorithm creates a schedule with the makespan that exceeds the largest machine workload by at most the length of the largest operation.
Resumo:
It is known that for the open shop scheduling problem to minimize the makespan there exists no polynomial-time heuristic algorithm that guarantees a worst-case performance ratio better than 5/4, unless P6≠NP. However, this result holds only if the instance of the problem contains jobs consisting of at least three operations. This paper considers the open shop scheduling problem, provided that each job consists of at most two operations, one of which is to be processed on one of the m⩾2 machines, while the other operation must be performed on the bottleneck machine, the same for all jobs. For this NP-hard problem we present a heuristic algorithm and show that its worst-case performance ratio is 5/4.