6 resultados para transient thermal distortion analysis

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents modeling results about the performance of flexible substrates when subjected to higher lead-free reflow temperatures. Both adhesiveless and adhesive types of polyimide substrates were studied. Finite element (FE) models of flex substrates were built, two copper tracks located in the centre of the substrate was considered. The thermal induced shear stress in the flex substrate during the lead-free reflow process was studied and the effect of the design changes including the track thickness, flex thickness, and copper width were studied. For both types of flexes, the one of most important variables for minimizing damage to the substrate is the height of the copper tracks. The height of flex and the width of copper track show less impact. Beside of the geometry effects, the increase in reflow peak temperature can also result in a significant increase in the interfacial stress between the copper track and flex. Higher stresses were identified within the adhesive flex due to the big CTE mismatch between the copper and adhesive/dielectric

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The curing of conductive adhesives and underfills can save considerable time and offer cost benefits for the microsystems and electronics packaging industry. In contrast to conventional ovens, curing by microwave energy generates heat internally within each individual component of an assembly. The rate at which heat is generated is different for each of the components and depends on the material properties as well as the oven power and frequency. This leads to a very complex and transient thermal state, which is extremely difficult to measure experimentally. Conductive adhesives need to be raised to a minimum temperature to initiate the cross-linking of the resin polymers, whilst some advanced packaging materials currently under investigation impose a maximum temperature constraint to avoid damage. Thermal imagery equipment integrated with the microwave oven can offer some information on the thermal state but such data is based on the surface temperatures. This paper describes computational models that can simulate the internal temperatures within each component of an assembly including the critical region between the chip and substrate. The results obtained demonstrate that due to the small mass of adhesive used in the joints, the temperatures reached are highly dependent on the material properties of the adjacent chip and substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal design of a power electronics module isolation substrate is assessed using a combination of finite element structural mechanics analysis and response surface optimisation technique. Primary failure modes in power electronics modules include the loss of structural integrity in the ceramic substrate materials due to stresses induced through thermal cycling. Analysis of the influence of ceramic substrate design parameters is undertaken using a design of experiments approach. Finite element analysis is used to determine the stress distribution for each design, and the results are used to construct a quadratic response surface function. A particle swarm optimisation algorithm is then used to determine the optimal substrate design. Analysis of response surface function gradients is used to perform sensitivity analysis and develop isolation substrate design rules. The influence of design uncertainties introduced through manufacturing tolerances is assessed using a Monte-Carlo algorithm, resulting in a stress distribution histogram. The probability of failure caused by the violation of design constraints has been analyzed. Six geometric design parameters are considered in this work and the most important design parameters have been identified. Overall analysis results can be used to enhance the design and reliability of the component.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper describes recent developments made to the stress analysis module within FLOTHERM, extending its capability to handle viscoplastic behavior. It also presents the validation of this approach and results obtained for an SMT resistor as an illustrative example. Lifetime predictions are made using the creep strain energy based models of Darveaux. Comment is made about the applicability of the damage model to the geometry of the joint under study.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigated the thermal design of the light emitting diode (LED)onto the board and its packaging. The LED was a 6-lead MultiLED with three chips designed for LCD backlighting and other lighting purposes. A 3D finite element model of this LED was built up and thermal analysis was carried out using the multi physics software package PHYSICA. The modeling results were presented as temperature distributions in each LED, and the predicted junction temperature was used for thermal resistance calculation. The results for the board structure indicated that (1) removing the foil attach decreased the thermal resistance, (2) Increasing the copper foil thickness reduced the thermal resistance. package design indicated that the SMT designed LED with integrated slug gave lower thermal resistance. Pb-free solder material gave lower thermal resistance and junction temperature when compared with conductive adhesive

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Encapsulant curing using a Variable Frequency Microwave (VFM) system is analysed numerically. Thermosetting polymer encapsulant materials require an input of heat energy to initiate the cure process. In this article, the heating is considered to be performed by a novel microwave system, able to perform the curing process more rapidly than conventional techniques. Thermal stresses are induced when packages containing materials with differing coefficients of thermal expansion are heated, and cure stresses are induced as thermosetting polymer materials shrink during the cure process. These stresses are developed during processing and remain as residual stresses within the component after the manufacturing process is complete. As residual stresses will directly affect the reliability of the device, it is necessary to assess their magnitude and the effect on package reliability. A coupled multiphysics model has been developed to numercially analyse the microwave curing process. In order to obtain a usefully accurate model of this process, a holistic approach has been taken, in which the process is not considered to be a sequence of discrete steps, but as a complex coupled system. An overview of the implemented numerical model is presented, with particular focus paid to analysis of induced thermal stresses. Results showing distribution of stresses within an idealised microelectronics package are presented and discussed.