5 resultados para tilt angle
em Greenwich Academic Literature Archive - UK
Resumo:
Signage systems are widely used in buildings to provide information for wayfinding, thereby assisting in navigation during normal circulation of pedestrians and, more importantly, exiting information during emergencies. An important consideration in determining the effectiveness of signs is establishing the region from which the sign is visible to occupants, the so-called Visibility Catchment Area (VCA). This paper attempts to factor into the determination of the VCA of signs, the observation angle of the observer using both experimental and theoretical analysis.
Resumo:
Signage systems are widely used in buildings to provide information for wayfinding, thereby assisting in navigation during normal circulation of pedestrians and, more importantly, exiting information during emergencies. An important consideration in determining the effectiveness of signs is establishing the region from which the sign is visible to occupants, the so-called visibility catchment area (VCA). This study attempts to factor into the determination of the VCA of signs, the observation angle of the observer. In building regulations, it is implicitly assumed that the VCA is independent of the observation angle. A theoretical model is developed to explain the relationship between the VCA and observation angle and experimental trials are performed in order to assess the validity of this model. The experimental findings demonstrate a consistency with the theoretical model. Given this result, the functionality of a comprehensive evacuation model is extended in accordance with the assumptions on which the theoretical model is based and is then demonstrated using several examples
Resumo:
TiAl castings are prone to various defects including bubbles entrained during the turbulent filling of moulds. The present research has exploited the principles of the Durville tilt casting technique to develop a novel process in which the Induction Skull Melting (ISM) of TiAl alloys in a vacuum chamber has been combined with controlled tilt pouring to achieve the tranquil transfer of the metal into a hot ceramic shell mould. Practical casting equipment has been developed to evaluate the feasibility of this process in parallel with the development of novel software to simulate and optimize it. The PHYSICA CFD code was used to simulate the filling, heat transfer and solidification during tilt pouring using a number of free surface modelling techniques, including the novel Counter Diffusion Method (CDM). In view of the limited superheat, particular attention was paid to the mould design to minimize heat loss and gas entrainment caused by interaction between the counter-flowing metal and gas streams. The model has been validated against real-time X-ray movies of the tilt casting of aluminium and against TiAl blade castings. Modelling has contributed to designing a mould to promote progressive filling of the casting and has led to the use of a parabolic tilting cycle to balance the competing requirements for rapid filling to minimize the loss of superheat and slow filling minimize the turbulence-induced defects.
Resumo:
The tilt-casting method is used to achieve tranquil filling of gamma-TiAl turbine blades. The reactive alloy is melted in a cold crucible using an induction coil and then the complete crucible-mould- running system assembly is rotated through 180degrees to transfer the metal into the mould. The induction current is ramped down gradually as the rotation starts and the mould is preheated to maintain superheat. The liquid metal then enters the mould and the gas within it (argon) escapes through the inlet aperture and through auxiliary vents. Solidification starts as soon the metal enters the mould and it is important to account for this effect to predict and prevent misruns. The rotation rate has to be controlled carefully to allow sufficient time for gas evacuation, but at the same time preserve superheat. This 3-phase system is modelled using the FV method, with a fast implicit numerical scheme used to capture the transient liquid free surface. The enthalpy method is used to model solidification and predict defects such as trapped bubbles, macro-porosity or surface connected porosity. Modeling is used to support an experimental program for the development of a production method for gamma-TiAl blades, with a target length of 40cm. The experiments provide validation for the model and the model in turn optimizes the tilt-casting process. The work is part of the EU project IMPRESS.
Resumo:
A video annotation system includes clips organization, feature description and pattern determination. This paper aims to present a system for basketball zone-defence detection. Particularly, a character-angle based descriptor for feature description is proposed. The well-performed experimental results in basketball zone-defence detection demonstrate that it is robust for both simulations and real-life cases, with less sensitivity to the distribution caused by local translation of subprime defenders. Such a framework can be easily applied to other team-work sports.