9 resultados para thermal expansion coefficient
em Greenwich Academic Literature Archive - UK
Resumo:
This paper describes how modeling technology has been used in providing fatigue life time data of two flip-chip models. Full-scale three-dimensional modeling of flip-chips under cyclic thermal loading has been combined with solder joint stand-off height prediction to analyze the stress and strain conditions in the two models. The Coffin-Manson empirical relationship is employed to predict the fatigue life times of the solder interconnects. In order to help designers in selecting the underfill material and the printed circuit board, the Young's modulus and the coefficient of thermal expansion of the underfill, as well as the thickness of the printed circuit boards are treated as variable parameters. Fatigue life times are therefore calculated over a range of these material and geometry parameters. In this paper we will also describe how the use of micro-via technology may affect fatigue life
Resumo:
A flip chip component is a silicon chip mounted to a substrate with the active area facing the substrate. This paper presents the results of an investigation into the relationship between a number of important material properties and geometric parameters on the thermal-mechanical fatigue reliability of a standard flip chip design and a flip chip design with the use of microvias. Computer modeling has been used to analyze the mechanical conditions of flip chips under cyclic thermal loading where the Coffin-Manson empirical relationship has been used to predict the life time of the solder interconnects. The material properties and geometry parameters that have been investigated are the Young's modulus, the coefficient of thermal expansion (CTE) of the underfill, the out-of-plane CTE (CTEz) of the substrate, the thickness of the substrate, and the standoff height. When these parameters vary, the predicted life-times are calculated and some of the features of the results are explained. By comparing the predicted lifetimes of the two designs and the strain conditions under thermal loading, the local CTE mismatch has been found to be one of most important factors in defining the reliability of flip chips with microvias.
Resumo:
The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.
Resumo:
In this paper, the performance of flexible substrates for lead-free applications was studied using finite element method (FEM). Firstly, the thermal induced stress in the flex substrate during the lead free solder reflow process was predicted. The shear stress at the interface between the copper track and flex was plotted. This shear stress increases with the thickness of the copper track. Secondly, an ACF flip chip was taken as a typical lead-free application of the flex substrate. The reflow effect on the reliability of ACF interconnections was analyzed. Higher stress was identified along the interface between the conductive particle and the metallization, and the interfacial stress increases with the reflow peak temperature and the coefficient of thermal expansion (CTE) of the adhesive. The moisture effect on the reliability of ACF joints were studied using a macro-micro modeling technique, the predominantly tensile stress found at the interface between the conductive particle and metallization could reduce the contact area and even cause the electrical failure. Modeling results are consistent with the findings in the experimental work
Resumo:
This work describes the work of an investigation of the effects of solder reflow process on the reliability of anisotropic conductive film (ACF) interconnection for flip-chip on flex (FCOF) applications. Experiments as well as computer modeling methods have been used. The results show that the contact resistance of ACF interconnections increases after the reflow and the magnitude of the increase is strongly correlated to the peak reflow temperature. In fact, nearly 40 percent of the joints are open when the peak reflow temperature is 260°C, while there is no opening when the peak temperature is 210°C. It is believed that the coefficient of thermal expansion (CTE) mismatch between the polymer particle and the adhesive matrix is the main cause of this contact degradation. To understand this phenomenon better, a three-dimensional (3-D) finite element (FE) model of an ACF joint has been analyzed in order to predict the stress distribution in the conductive particles, adhesive matrix and metal pads during the reflow process. The stress level at the interface between the particle and its surrounding materials is significant and it is the highest at the interface between the particle and the adhesive matrix.
Resumo:
Encapsulant curing using a Variable Frequency Microwave (VFM) system is analysed numerically. Thermosetting polymer encapsulant materials require an input of heat energy to initiate the cure process. In this article, the heating is considered to be performed by a novel microwave system, able to perform the curing process more rapidly than conventional techniques. Thermal stresses are induced when packages containing materials with differing coefficients of thermal expansion are heated, and cure stresses are induced as thermosetting polymer materials shrink during the cure process. These stresses are developed during processing and remain as residual stresses within the component after the manufacturing process is complete. As residual stresses will directly affect the reliability of the device, it is necessary to assess their magnitude and the effect on package reliability. A coupled multiphysics model has been developed to numercially analyse the microwave curing process. In order to obtain a usefully accurate model of this process, a holistic approach has been taken, in which the process is not considered to be a sequence of discrete steps, but as a complex coupled system. An overview of the implemented numerical model is presented, with particular focus paid to analysis of induced thermal stresses. Results showing distribution of stresses within an idealised microelectronics package are presented and discussed.
Resumo:
In this paper, computer modelling techniques are used to analyse the effects of globtops on the reliability of aluminium wirebonds in power electronics modules under cyclic thermal-mechanical loading conditions. The sensitivity of the wirehond reliability to the changes of the geometric and the material property parameters of wirebond globtop are evaluated and the optimal combination of the Young's modulus and the coefficient of thermal expansion have been predicted.
Resumo:
The possible failure mechanisms of anisotropic conductive film (ACF) joints under isothermal ageing conditions have been identified through experiments. It has been found that ACF joints formed at higher bonding temperatures can prevent increases in the contact resistance for any ageing temperature. The higher the ageing temperature the higher the electrical failure rate is. The formation of conduction gaps between the conductive particles and the pads and damages to the metal coatings of the particle have been identified as the reasons behind the electrical failures during ageing. In order to understand the mechanism for the formation of the conduction gap and damages in metal coatings during the isothermal ageing, computer modelling has been carried out and the results are discussed extensively. The computer analysis shows that stresses concentrate at the edges of the particle–pad interface, where the adhesive matrix meets the particle. This could lead to subsequent damages and reductions in the adhesion strength in that region and it is possible for the conductive particle to be detached from the pad and the adhesive matrix. It is believed that because of this a conduction gap appears. Furthermore, under thermal loading the thermal expansion of the adhesive matrix squeezes the conductive particle and damages the metal coatings. Experimental evidences support this computational finding. It is, therefore, postulated that if an ACF-based electronic component operates in a high temperature aging condition, its electrical and mechanical functionalities will be at risk.
Resumo:
Anisotropic conductive film (ACF) which consists of an adhesive epoxy matrix and randomly distributed conductive particles are widely used as the connection material for electronic devices with high I/O counts. However, for the semiconductor industry the reliability of the ACF is still a major concern due to a lack of experimental reliability data. This paper reports an investigation into the moisture effects on the reliability of ACF interconnections in the flip-chip-on-flex (FCOF) applications. A macro-micro 3D finite element modeling technique was used in order to make the multi-length-scale modeling of the ACF flip chip possible. The purposes of this modeling work was to understand the role that moisture plays in the failure of ACF flip chips, and to look into the influence of physical properties and geometric characteristics, such as the coefficient of the moisture expansion (CME), Young's modulus of the adhesive matrix and the bump height on the reliability of the ACF interconnections in a humid environment. Simulation results suggest that moisture-induced swelling of the adhesive matrix is the major cause of the ACF joint opening. Modeling results are consistent with the findings in the experimental work.