2 resultados para spore bacterienne

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A species of the hyper-parasitic bacterium Pasteuria was isolated from the root-knot nematode Meloidogyne ardenensis infecting the roots of ash (Fraxinus excelsior). It is morphologically different from some other Pasteuria pathogens of nematodes in that the spores lack a basal ring on the ventral side of the spore and have a unique clumping nature. Transmission electron microscopy (TEM) showed that the clumps of spores are not random aggregates but result from the disintegration of the suicide cells of the thalli. Sporulation within each vegetative mycelium was shown to be asynchronous. In addition to the novel morphological features 16S rRNA sequence analysis showed this to be a new species of Pasteuria which we have called P. hartismeri. Spores of P. hartismeri attach to juveniles of root-knot nematodes infecting a wide range of plants such as mint (Meloidogyne hapla), rye grass (unidentified Meloidogyne sp.) and potato (Meloidogyne fallax).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two media were developed which specifically allow the cultivation of Bacillus thuringiensis while it is in the vegetative as opposed to the spore form. Using these media B. thuringiensis was shown conclusively for the first time to exist in an active form on the phylloplane. The profile of its appearance in vegetative and spore form was followed over a growing season on clover (Trifolium hybridum) in the field. Three simultaneous and sudden rises and declines of both spore and vegetative cell densities were observed. The most common other spore-former on these leaves was Bacillus cereus but the fluctuations in appearance of these two very closely related species were not co-incident. Using specific PCR primers a considerable diversity of cry toxin gene types was found in isolates that had been recovered in vegetative form ([`]vegetative isolates') with the majority possessing multiple [delta]-endotoxin genes while some had only one of those tested. Bioassays against a lepidopteran insect of purified [delta]-endotoxins showed that they were no more potent than those from a laboratory-adapted strain. PCR primers for an internal region of the vip3A gene produced amplification in 70% of the vegetative isolates compared to 25% of the laboratory-adapted strains tested.